Features / Enhancements
- Optional Direct Azure AI Search Integration
- Thanks to @farzad528 for adding a feature that allows direct Azure AI Search usage alongside the existing vector store approach.
- The notebook logic now checks if a
FileSearchTool
is present; if not, it configures Azure AI Search usingAZURE_SEARCH_CONNECTION_NAME
andAZURE_SEARCH_INDEX_NAME
from your.env
.
- Logic App Integration for
send_email
- Replaced the local/mocked
send_email
function with an HTTP call to a Logic App. - Added a
LOGIC_APP_SEND_EMAIL_URL
parameter to.env.example
, along with instructions and an ARM template (send_email_logic_app.template.json
) for deploying the Logic App.
- Replaced the local/mocked
- Environment Configuration Updates
- Revised
.env.example
to unify all optional parameters (Bing, Logic App, Azure Search, etc.) in one place. - README now describes how to set these environment variables and clarifies how each integration (Bing, Logic App, Azure AI Search) is triggered.
- Revised
Bug Fixes
- Correction of swapped OpenWeather parameters
- Thanks to @gerbermarco for fixing the
OPENWEATHER_ONE_API_KEY
andOPENWEATHER_GEO_API_KEY
variable values in.env.example
.
- Thanks to @gerbermarco for fixing the
Breaking Changes
- None.
Features
- Initial release of an enterprise-grade streaming agent built on Azure AI Agent Service.
- Demonstrates programmatic creation or reuse of an agent model (e.g., GPT-4o).
- Integrates local enterprise data (HR, PTO, policy files) into a vector store for retrieval-augmented generation (RAG).
- Offers optional Bing grounding and custom Python functions (e.g. weather, stock lookup, email sending).
- Shows how to stream partial responses and tool calls in real-time.
- Includes a Gradio interface for interactive demos.
Bug Fixes
None
Breaking Changes
None