Skip to content

Commit

Permalink
update linear algebra
Browse files Browse the repository at this point in the history
  • Loading branch information
CAIMEOX committed Jan 26, 2024
1 parent 6966d32 commit 79ca58e
Show file tree
Hide file tree
Showing 25 changed files with 550 additions and 16 deletions.
9 changes: 8 additions & 1 deletion .vscode/settings.json
Original file line number Diff line number Diff line change
@@ -1,5 +1,12 @@
{
"editor.formatOnSave": true,
"explorer.excludeGitIgnore": true,
"latex-workshop.latex.autoBuild.run": "never",
"filewatcher.commands": [
{
"match":"trees/",
"isAsync": true,
"cmd": "cd ${currentWorkspace} && make",
"event": "onFolderChange"
}
]
}
273 changes: 273 additions & 0 deletions flake.lock

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 1 addition & 1 deletion theme/forest.xsl
Original file line number Diff line number Diff line change
Expand Up @@ -172,7 +172,7 @@
<nav class="nav">
<div class="logo">
<a href="index.xml" title="Home">
<xsl:text>« Home</xsl:text>
<xsl:text>Home</xsl:text>
</a>
</div>
</nav>
Expand Down
14 changes: 13 additions & 1 deletion trees/def.tree
Original file line number Diff line number Diff line change
Expand Up @@ -13,4 +13,16 @@
\transclude{def-000C}
\transclude{def-000D}
\transclude{def-000E}
\transclude{def-000F}
\transclude{def-000F}
\transclude{def-000G}
\transclude{def-000H}
\transclude{def-000I}
\transclude{def-000J}
\transclude{def-000K}
\transclude{def-000L}
\transclude{def-000M}
\transclude{def-000N}
\transclude{def-000O}
\transclude{def-000P}
\transclude{def-000Q}
\transclude{def-000R}
2 changes: 1 addition & 1 deletion trees/def/def-0002.tree
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
\title{Abel Group}
\taxon{Definition}
\p{
If in a group #{G}, #{\forall a,b\in G, a\circ b=b\circ a} then #{G} is called an \strong{abelian (commutative) group}.
If in a [group](def-0001) #{G}, #{\forall a,b\in G, a\circ b=b\circ a} then #{G} is called an \strong{abelian (commutative) group}.
}
2 changes: 1 addition & 1 deletion trees/def/def-0006.tree
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
\title{Field}
\taxon{Definition}
\p{
A field is a set #{F} together with two binary operations #{+} and #{\times} on #{F} st #{(F,+)} is an abelian group (identity is #{0}) and #{(F-\{0\},\times)} is also an abelian group such that
A field is a set #{F} together with two binary operations #{+} and #{\times} on #{F} st #{(F,+)} is an [abelian group](def-0002) (identity is #{0}) and #{(F-\{0\},\times)} is also an abelian group such that
#{a\times(b+c)=a\times b+a\times c,\forall a,b,c\in F}
}
24 changes: 24 additions & 0 deletions trees/def/def-000G.tree
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
\title{List}
\taxon{Definition}
\p{
Let #{n} be a natural number. A \strong{list} of length #{n} is an ordered collection of #{n} elements.
##{
(x_1, x_2, \dots, x_n)
}
Two lists are equal if and only if they have the same length and the same elements in the same order.
}

\strong{Addition in Lists}
\p{
Let #{n} be a natural number. Let #{(x_1, x_2, \dots, x_n)} and #{(y_1, y_2, \dots, y_n)} be lists of length #{n}. The \strong{sum} of these lists is the list #{(x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)}.
}

\strong{Additive Inverse in Lists}
\p{
Let #{n} be a natural number. Let #{x=(x_1, x_2, \dots, x_n)} be a list of length #{n}. The \strong{additive inverse} of this list is the list #{-x=(-x_1, -x_2, \dots, -x_n)}.
}

\strong{Scalar Multiplication in Lists}
\p{
Let #{n} be a natural number. Let #{x=(x_1, x_2, \dots, x_n)} be a list of length #{n}. Let #{c} be a real number. The \strong{scalar multiplication} of #{c} and #{x} is the list #{cx=(cx_1, cx_2, \dots, cx_n)}.
}
29 changes: 29 additions & 0 deletions trees/def/def-000H.tree
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
\title{Vector Space}
\taxon{Definition}
\p{
A vector space over a [field](def-0006) #{F} is a non-empty set #{V} together with a binary operation and a binary function that satisfy the axioms listed below.
In this context, the elements of #{F} are commonly called \strong{vectors}, and the elements of #{F} are called \strong{scalars}.
\ul{
\li{Commutativity: #{
\forall x, y \in V, x + y = y + x
} }
\li{Associativity: #{
\forall x, y, z \in V, (x + y) + z = x + (y + z)
} }
\li{Additive Identity: #{
\exists 0 \in V \text{ such that } \forall x \in V, x + 0 = x
} }
\li{Multiplicative Identity: #{
\forall x \in V, 1x = x
} }
\li{Additive Inverse: #{
\forall x \in V, \exists y \in V \text{ such that } x + y = 0
} }
\li{Distributivity: #{
\forall x, y \in V, \forall c, d \in F, c(x + y) = cx + cy, (c + d)x = cx + dx
} }
}
}
\p{
Elements of a vector space are called \strong{vectors} or \strong{points}.
}
Loading

0 comments on commit 79ca58e

Please sign in to comment.