Skip to content
This repository has been archived by the owner on Jan 2, 2025. It is now read-only.

Latest commit

 

History

History
185 lines (154 loc) · 6.83 KB

README.md

File metadata and controls

185 lines (154 loc) · 6.83 KB

Admin System Backend

Table of Contents

  1. Setup
  2. Usage
    1. Docker
    2. Local
  3. Documentation
    1. API
    2. Files
    3. Database

Setup

Note Skip to the Usage -> Docker section if you want to run the Docker image instead of installing and running locally.

  1. Install pipenv. See the documentation if you run into any issues with it.

    pip install --user pipenv
  2. Install dependencies:

    Note Expects that you have Python 3.11

    pipenv sync --dev
  3. Run the Machine Learning model generation script:

    cd ../../machine-learning
    pip install -r requirements.txt
    python model.py
    cd ../admin-system/backend
  4. Move the generated model into admin-system/backend/instance/

  5. Copy the .env.example file to .env and fill in the SECRET_KEY with a randomized value.

Usage

Docker

Pull the image

docker pull ghcr.io/computing-collective/3fa-backend:latest

Copy the instance folder from the container

mkdir -p instance
docker run -d --name copy ghcr.io/computing-collective/3fa-backend:latest
# Check if the container is running (value should be "running")
docker container inspect -f '{{.State.Status}}' copy
# If it isn't running, wait try the run command again
sleep 20 # Wait 20 seconds for the container to initialize
docker stop copy
docker cp copy:/usr/src/instance/ ./
docker rm copy

Run the container

For the following commands, replace %cd% with the appropriate current directory command for your shell as follows:

  • Windows Command Prompt: "%cd%"
  • Windows PowerShell: ${PWD}
  • Linux: "$(pwd)"

Also be sure to replace secret_to_replace with a randomized value.

Note You will need your laptop's Wi-Fi hotspot turned on to use this IP address. You can always change the IP address to localhost if you don't want to do this.

docker run -p 192.168.137.1:5000:5000 --name admin-server --mount type=bind,src="%cd%/instance",target=/usr/src/instance -e "SECRET_KEY=secret_to_replace" ghcr.io/computing-collective/3fa-backend:latest

Access the server at 192.168.137.1:5000

With localhost:

docker-compose up # From the admin-system/backend directory and be sure to have a .env file with SECRET_KEY="secret_to_replace"
OR
docker run -p 5000:5000 --name admin-server --mount type=bind,src="%cd%/instance",target=/usr/src/instance -e "SECRET_KEY=secret_to_replace" ghcr.io/computing-collective/3fa-backend:latest

Access the server at localhost:5000

Run tests with coverage

docker run --rm -e "SECRET_KEY=secret_to_replace" ghcr.io/computing-collective/3fa-backend:latest /usr/src/.venv/bin/python -m pytest --cov=api --cov-branch

Build the image

Note You must be in the admin-system/backend directory for this command to work

docker build -t ghcr.io/computing-collective/3fa-backend:latest .

Local

Run the server (production)

Note Gunicorn does not run on Windows. You will need to use WSL

pipenv run gunicorn -b :5000 -w 4 'api.app:create_app()'

Access the server at localhost:5000

Run the server (development mode)

Note You will need your laptop's Wi-Fi hotspot turned on to use this IP address. You can always change the IP address to localhost if you don't want to do this.

pipenv run flask -A api.app.py --debug run -h 192.168.137.1

Access the server at 192.168.137.1:5000

With localhost:

pipenv run flask -A api.app.py --debug run -h 0.0.0.0

Access the server at localhost:5000

Run tests with coverage

pipenv run pytest --cov=api --cov-branch

Documentation

API

Please see API.md for details on each of the endpoints. Note that there is extensive verification beyond the example requests and responses shown including timing out of tokens, content type verification, and more. Please see the code in the api folder for more details. If you want to play with the API yourself in Postman, feel free to import the Postman collection and Postman environment.

Files

Below is a list of the key files in the project and their purpose.

admin-system
└─ backend
   ├─ api
   │  ├─ app.py                        # Flask app factory
   │  ├─ helpers.py                    # Helper functions for the API
   │  ├─ machine_learning_eval.py      # Face recognition evaluation
   │  ├─ models.py                     # SQLAlchemy models - see the "Database" section below for more details
   │  └─ routes
   │     ├─ admin.py                   # Admin dashboard routes
   │     ├─ base.py                    # Base routes (health and index)
   │     ├─ client.py                  # Client application routes
   │     └─ errors.py                  # Error handler
   ├─ constants.py                     # Constants and definitions used throughout the project
   ├─ docker-compose.yml
   ├─ Dockerfile
   ├─ instance                         # Folder containing the machine learning model, the database, and user-uploaded files
   │  └─ ...
   ├─ Pipfile                          # Pipenv file for dependencies
   ├─ Pipfile.lock                     # Pipenv lock file
   ├─ pytest.ini                       # Pytest configuration
   └─ tests
      ├─ conftest.py                   # Pytest fixtures and configuration to be used across multiple tests
      ├─ data
      │  ├─ mock_data.txt              # Mock file for testing
      │  └─ user1.png                  # Mock image for testing
      ├─ functional
      │  ├─ test_admin.py              # Admin dashboard tests
      │  ├─ test_base.py               # Base route tests
      │  └─ test_client.py             # Client application tests
      ├─ unit
      │  ├─ test_factory.py            # Flask app factory tests
      │  ├─ test_helpers.py            # Helper function tests
      │  ├─ test_machine_learning.py   # Face recognition evaluation tests
      │  └─ test_models.py             # SQLAlchemy model tests
      └─ __init__.py                   # Empty file to allow pytest to find the tests folder

Database

The database is organized into the following tables. Specific table details and their fields can be found in models.py.

img.png