-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp1.py
43 lines (31 loc) · 1.38 KB
/
app1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import numpy as np
from flask import Flask,request,jsonify,render_template
import os
import tensorflow as tf
from transformers import AutoTokenizer
from transformers import TFAutoModelForSeq2SeqLM,DataCollatorForSeq2Seq
from transformers import AdamWeightDecay
from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM
import speech_recognition as sr
app = Flask(__name__)
model_checkpoint = "Helsinki-NLP/opus-mt-en-hi"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
model = TFAutoModelForSeq2SeqLM.from_pretrained("tf_model/")
# Example function for translation using the model (adjust as per your model)
def translate_text(text, model, tokenizer):
tokenized = tokenizer([text], return_tensors="np")
out = model.generate(**tokenized, max_length=256)
with tokenizer.as_target_tokenizer():
decoded_text = tokenizer.decode(out[0], skip_special_tokens=True)
return decoded_text
@app.route('/')
def index():
return render_template('index1.html')
@app.route('/convert', methods=['POST'])
def convert():
text = request.form['text'] # Get the English text from the form
# Translate the text using the deep learning model
translated_text = translate_text(text, model, tokenizer)
return render_template('index1.html', translated_text=translated_text)
if __name__ == '__main__':
app.run(debug=True)