-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnoisy_student_utils.py
349 lines (313 loc) · 16.8 KB
/
noisy_student_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
from txgnn import TxData, TxGNN, TxEval
from txgnn.utils import create_split, print_val_test_auprc
import numpy as np
import time
import pandas as pd
import pickle
import os
import sys
import pprint
import random
def obtain_disease_idx(TxData1, deg):
'''
returns the disease idx that have less than k degrees (drug-disease relation)
'''
## extract all disease's ids
kg = pd.read_csv('data/kg.csv')
diseases1= kg[kg['x_type'] == 'disease']['x_id']
diseases2 = kg[kg['y_type'] == 'disease']['y_id']
disease_ids = pd.concat([diseases1, diseases2]).unique()
len(disease_ids)
## obtain all diseases' degree from disease-drug relation only
disease_drug1 = kg[(kg['x_type'] == 'disease') & (kg['y_type'] == 'drug')]['x_id']
disease_drug2 = kg[(kg['x_type'] == 'drug') & (kg['y_type'] == 'disease')]['y_id']
disease_drug_value_counts = pd.concat([disease_drug1, disease_drug2]).value_counts()
disease_drug_degree = disease_drug_value_counts.reindex(disease_ids).fillna(0).astype(int)
disease_drug_degree.sum()
## length of ID
low_disease = disease_drug_degree[disease_drug_degree < deg]
id_mapping = TxData1.retrieve_id_mapping()
id2idx = {id:idx for idx, id in id_mapping['idx2id_disease'].items()}
print(f"Total number of diseases?: {len(id2idx)}")
print(f"total number of {deg} > degree diseases?: {len(low_disease)}")
low_disease_idx = low_disease.index.map(lambda x: id2idx[x] if '_' in x else id2idx[x+'.0'])#.apply(lambda x: id2idx[x])
low_disease_idx = np.array(low_disease_idx)
return low_disease_idx
def disease_idx_wout_val_test(seed, args):
## extract all disease's ids
data_folder = "./data/"
kg_path = data_folder + 'kg_directed.csv'
df = pd.read_csv(kg_path)
df_train, df_valid, df_test = create_split(df, args.split, None, None, seed)
df_dd_x_idx = df[df.x_type == "disease"].x_idx
df_dd_y_idx = df[df.y_type == "disease"].y_idx
df_dd_idx = set()
df_dd_idx.update(df_dd_x_idx.values, df_dd_y_idx.values)
full_length = len(df_dd_idx)
df_valid_test = pd.concat([df_valid, df_test])
df_valid_test_disease_idx = df_valid_test[df_valid_test.relation.isin(["indication", "contraindication"])].y_idx.drop_duplicates().values
df_dd_idx.difference_update(df_valid_test_disease_idx)
assert full_length - len(df_valid_test_disease_idx) == len(df_dd_idx)
print(f"created list of disease idxs excluding ones existing in validation, test. Went from size {full_length} to {len(df_dd_idx)} without val and test")
return df_train.drop_duplicates(), df_valid.drop_duplicates(), df_test.drop_duplicates(), np.array(list(df_dd_idx))
def obtain_high_degree_disease_id_w_df(pseudo_train, seed, deg):
'''
return pseudo_train with at least one degree in df_train
'''
df_train = pd.read_csv(f'data/complex_disease_{seed}/train.csv')
## extract all disease's ids
diseases1= df_train[df_train['x_type'] == 'disease']['x_id']
diseases2 = df_train[df_train['y_type'] == 'disease']['y_id']
disease_ids = pd.concat([diseases1, diseases2]).unique()
len(disease_ids)
## obtain all diseases' degree from disease-drug relation only
disease_drug1 = df_train[(df_train['x_type'] == 'disease') & (df_train['y_type'] == 'drug')]['x_id']
disease_drug2 = df_train[(df_train['x_type'] == 'drug') & (df_train['y_type'] == 'disease')]['y_id']
drugs1 = df_train[(df_train['x_type'] == 'disease') & (df_train['y_type'] == 'drug')]['y_id']
drugs2 = df_train[(df_train['x_type'] == 'drug') & (df_train['y_type'] == 'disease')]['x_id']
drugs_value_counts = pd.concat([drugs1, drugs2]).value_counts()
disease_drug_value_counts = pd.concat([disease_drug1, disease_drug2]).value_counts()
disease_drug_degree = disease_drug_value_counts.reindex(disease_ids).fillna(0).astype(int)
disease_drug_degree.sum()
## length of ID
high_disease_series = disease_drug_degree[disease_drug_degree >= deg]
high_drug_series = drugs_value_counts[drugs_value_counts >= deg]
high_disease_set = set(high_disease_series.index)
high_drug_set = set(high_drug_series.index)
filtered_pseudo_train = pseudo_train[(pseudo_train.y_id.isin(high_disease_set)) & (pseudo_train.x_id.isin(high_drug_set))]
return filtered_pseudo_train
def _turn_into_df_helper(result, rel, dd_df, args):
random_k, k_top_bottom_candidates, strong_scores = args.random_pseudo_k, args.k_top_bottom_candidates, args.strong_scores
concat_df_dd = []
extra_df_dd = []
NUM_DRUGS = len(next(iter(result['ranked_drug_ids'].values())))
strt = time.time()
for (dis_id, drug_ids), drug_idxs, dis_idx, ranked_scores in zip(result['ranked_drug_ids'].items(), result['ranked_drug_idxs'].values(), result['dis_idx'].values(), result['ranked_scores'].values()):
extra_dicts = None
if k_top_bottom_candidates is not None:
extra_dicts = [{'y_id': dis_id, 'y_idx': dis_idx, 'x_id': drug_id, 'x_idx': drug_idx, 'relation': rel, 'score': ranked_score} for i, (drug_id, drug_idx, ranked_score) in enumerate(zip(drug_ids, drug_idxs, ranked_scores)) if i < k_top_bottom_candidates or i >= NUM_DRUGS - k_top_bottom_candidates]
elif strong_scores is not None:
extra_dicts = [{'y_id': dis_id, 'y_idx': dis_idx, 'x_id': drug_id, 'x_idx': drug_idx, 'relation': rel, 'score': ranked_score} for i, (drug_id, drug_idx, ranked_score) in enumerate(zip(drug_ids, drug_idxs, ranked_scores)) if abs(ranked_score) > strong_scores]
new_dicts = [{'y_id': dis_id, 'y_idx': dis_idx, 'x_id': drug_id, 'x_idx': drug_idx, 'relation': rel, 'score': ranked_score} for i, (drug_id, drug_idx, ranked_score) in enumerate(zip(drug_ids, drug_idxs, ranked_scores))]
## generating random k pseudo labels on non-existing relations
if random_k is not None:
extra_df_dd.append(pd.DataFrame(random.sample(new_dicts, random_k)))
## generate pseudo labels on existing relations
temp_df = pd.DataFrame(new_dicts)
concat_df_dd.append(temp_df)
if extra_dicts is not None:
extra_df = pd.DataFrame(extra_dicts)
extra_df_dd.append(extra_df)
b4_merge = time.time()
print(f"time b4 merge: {b4_merge - strt}")
## Filter and concatenate list of dataframes
df = pd.concat(concat_df_dd)
extra_df = pd.concat(extra_df_dd) if len(extra_df_dd) > 0 else None
if extra_df is None:
print(f"No pseudo labels outside of training dataset were added")
## random relation can only happen between entities that have seen labels. But this random relation could be a non-existent relation
if extra_df is not None and not args.include_all_pseudo:
b4_enforcing = len(extra_df)
print(extra_df.x_id.isin(dd_df.x_id).sum(), extra_df.y_id.isin(dd_df.y_id).sum())
extra_df = extra_df[(extra_df.x_id.isin(dd_df.x_id)) & (extra_df.y_id.isin(dd_df.y_id))]
print(f"b4 and after enforcing only between entities that have seen labels: {b4_enforcing}, {len(extra_df)}")
df = df.merge(dd_df[['x_id', 'y_id', 'relation']], on=['x_id', 'y_id', 'relation'], how="inner")
df = pd.concat([df, extra_df])
print(f"merging time: {time.time() - b4_merge}")
b4_dropping_dup = len(df)
df = df.drop_duplicates()
print(f"[{rel}]: before and after dropping dup: {b4_dropping_dup}, {len(df)}")
df["x_idx"] = df["x_idx"].astype(float)
df["y_type"] = "disease"
df["x_type"] = "drug"
return df
def turn_into_df(results, txdata, args,):
print("turning pseudo labels into dataframe...")
strt = time.time()
dd_df = txdata.df_train if args.ptrain or args.include_all_pseudo else txdata.og_filtered_dd
dd_df = dd_df[dd_df.relation.isin(["indication", "contraindication"])]
concat_df = []
for rel, result in results.items():
concat_df.append(_turn_into_df_helper(result, rel, dd_df, args,))
pseudo_df = pd.concat(concat_df)
return pseudo_df
def init_logfile(i, seed, args):
'''
create and set logfile to be written. Also write init messages such as args and seed
'''
if args.epochs:
save_dir = f"./Results_e{args.epochs}/{args.fname}/{seed}/"
else:
save_dir = f"./after_saving_rev_e1200_90/{args.fname}/{seed}/"
if not os.path.exists(save_dir):
os.makedirs(save_dir)
log_file = open(save_dir + f"{i}.txt", 'w', buffering=1)
sys.stderr = log_file
sys.stdout = log_file
print("Arguments received:")
pprint.pprint(vars(args))
print("------------------------------")
print(f"Using seed: {seed}")
return save_dir, log_file
def print_val_test_auprc_w_path(pretrained_path, split, seed):
TxData1 = TxData(data_folder_path = './data/')
TxData1.prepare_split(split=split, seed=seed, no_kg=False)
TxGNN1 = TxGNN(
data = TxData1,
weight_bias_track = False,
proj_name = 'TxGNN',
exp_name = 'TxGNN'
)
TxGNN1.load_pretrained(pretrained_path)
TxGNN1.print_model_size()
G = TxGNN1.G.to(TxGNN1.device)
best_G = TxGNN1.best_G.to(TxGNN1.device)
best_model = TxGNN1.best_model.to(TxGNN1.device)
best_model.eval()
g_valid_pos, g_valid_neg = TxGNN1.g_valid_pos, TxGNN1.g_valid_neg
g_test_pos, g_test_neg = TxGNN1.g_test_pos, TxGNN1.g_test_neg
print_val_test_auprc(best_model, g_valid_pos, g_valid_neg, g_test_pos, g_test_neg, best_G, TxGNN1.dd_etypes, TxGNN1.device)
# def generate_pseudo_labels(pre_trained_dir, size, seed, mode=None):
def generate_pseudo_labels(pre_trained_dir, size, seed, args, mode=None):
'''
Loads a pre-trained model, calls (obtain_disease_idx, turn_into_dataframe) to generates psuedo_labels for diseases less than 'deg'. Returns dataframe ready to be augmented to df_train.
'''
split = args.split
# split, deg, generate_inog = args.split, args.deg, args.generate_inog
strt = time.time()
TxData1 = TxData(data_folder_path = './data/')
TxData1.prepare_split(split=split, seed=seed, no_kg=False, pseudo_on_train=args.ptrain)
txGNN = TxGNN(
data = TxData1,
weight_bias_track = False,
proj_name = 'TxGNN',
exp_name = 'TxGNN'
)
txGNN.load_pretrained(pre_trained_dir)
if args.debug:
print("using ptrain")
dd_df = TxData1.df_train
ind_idx = dd_df[dd_df.relation == "indication"].y_idx.unique()[:10]
cind_idxs = dd_df[dd_df.relation == "contraindication"].y_idx.unique()[:10] #### Test #### to check reproducibility of valid pseudo scores
dd_df = dd_df[dd_df.relation.isin(["indication", "contraindication"])]
elif args.ptrain:
print("using ptrain")
dd_df = TxData1.df_train
ind_idx = dd_df[dd_df.relation == "indication"].y_idx.unique()
cind_idxs = dd_df[dd_df.relation == "contraindication"].y_idx.unique() #### Test #### to check reproducibility of valid pseudo scores
dd_df = dd_df[dd_df.relation.isin(["indication", "contraindication"])]
elif args.exlucde_valid_test:
df_train, df_valid, df_test, disease_idx = disease_idx_wout_val_test(seed, args)
assert sum(df_train.x_idx - TxData1.df_train.x_idx) == 0, "split is somehow different"
assert sum(df_valid.x_idx - TxData1.df_valid.x_idx) == 0, "split is somehow different"
assert sum(df_test.x_idx - TxData1.df_test.x_idx) == 0 , "split is somehow different"
ind_idx = disease_idx
cind_idxs = disease_idx
else:
all_disease_idx = TxData1.df[TxData1.df['y_type'] == "disease"].y_idx.unique()
ind_idx = all_disease_idx
cind_idxs = all_disease_idx
txEval = TxEval(model = txGNN)
indication, contraindication = None, None
if mode != "contraindication":
indication = txEval.eval_disease_centric(disease_idxs = ind_idx,
relation = 'indication',
save_name = None,
return_raw="concise",
save_result = False)
if mode != "indication":
contraindication = txEval.eval_disease_centric(disease_idxs = cind_idxs,
relation = 'contraindication',
save_name = None,
return_raw="concise",
save_result = False)
pretrain_scores_dict = None
if args.pseudo_pretrain:
best_G, best_model = txGNN.best_G, txGNN.best_model
h, beta_kl_loss, distmult = best_model(best_G, pretrain_mode=True, mode='train', return_h_and_kl=True,)
pretrain_scores_dict, _ = distmult(best_G, best_G, h, mode=None, pretrain_mode=True,)
psuedo_end = time.time()
print(f"time it took to generate psuedo_labels: {psuedo_end - strt}")
return TxData1, {'indication': indication, 'contraindication': contraindication}, pretrain_scores_dict
def train_w_psuedo_labels(additional_train, pretrain_scores_dict, seed, save_dir, args, size=None, i=0):
'''
Takes in pretrained model and generate psuedo label?
'''
dropout, create_psuedo_edges, split, reparam_mode, weight_decay, soft_pseudo, kl, neg_pseudo_sampling, no_dpm, use_og, LSP, LSP_size, T = args.dropout,\
args.psuedo_edges, args.split, args.reparam_mode, args.weight_decay, args.soft_pseudo, args.kl, args.neg_pseudo_sampling, args.no_dpm, args.use_og, \
args.LSP, args.LSP_size,args.T
size = size if size is not None else args.student_size
strt = time.time()
TxData1 = TxData(data_folder_path = './data/')
## add additional psuedo-training labels
TxData1.prepare_split(split=split, seed=seed, no_kg=False, additional_train=additional_train, create_psuedo_edges=create_psuedo_edges, soft_pseudo=soft_pseudo)
TxGNN1 = TxGNN(
data = TxData1,
weight_bias_track = True,
proj_name = 'TxGNN',
exp_name = 'TxGNN',
use_og = use_og,
T = T
)
## pass in pseudo_pretrain scores
args.pretrain_scores_dict = pretrain_scores_dict
TxGNN1.model_initialize(n_hid = size,
n_inp = size,
n_out = size,
proto = not no_dpm,
proto_num = 3,
attention = False,
sim_measure = 'all_nodes_profile',
bert_measure = 'disease_name',
agg_measure = 'rarity',
num_walks = 200,
walk_mode = 'bit',
path_length = 2,
dropout=dropout,
reparam_mode=reparam_mode if i != 0 or args.force_reparam else None,
kl = kl,
LSP = LSP if i != 0 else None,
LSP_size=LSP_size if i != 0 else None,
args=args,)
# Train
if args.debug:
TxGNN1.print_model_size()
TxGNN1.finetune(n_epoch = 19, #---
learning_rate = 5e-4,
train_print_per_n = 5,
valid_per_n = 20,
weight_decay = weight_decay,
args=args)
else:
if args.i==0:
pretrain_phase_ckpt = f"./pretrained_models/{args.teacher_size}_pretrain/{seed}"
else:
pretrain_phase_ckpt = f"./pretrained_models/{args.student_size}_pretrain/{seed}"
if (not args.force_iter0 or args.force_finetune_iter0) and os.path.exists(pretrain_phase_ckpt):
print(f"loading pretraining phase from {pretrain_phase_ckpt}")
TxGNN1.load_pretrained(pretrain_phase_ckpt, keep_config=True)
else:
print(f"no saved pretrain phase detected. Starting pretraining from scratch.")
TxGNN1.pretrain(n_epoch = 1, #---
learning_rate = 1e-3,
batch_size = 1024,
train_print_per_n = 20)
TxGNN1.save_model(pretrain_phase_ckpt)
if args.only_pretrain:
raise ValueError("Only saving pretraining phase successful")
TxGNN1.print_model_size()
n_epoch = 1200
if args.epochs:
n_epoch = args.epochs
TxGNN1.finetune(n_epoch = n_epoch, #---
learning_rate = 5e-4,
train_print_per_n = 5,
valid_per_n = 20,
weight_decay = weight_decay,
args=args,)
print(f"time it took for this training iteration: {time.time() - strt}")
if save_dir is not None:
if not os.path.exists(save_dir):
os.makedirs(save_dir)
# noisy_student_fpath = './Noisy_student/'
TxGNN1.save_model(path=save_dir)