forked from ely-mitu/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
validateBinarySearchTree.java
116 lines (99 loc) · 3.44 KB
/
validateBinarySearchTree.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
// Source : https://oj.leetcode.com/problems/validate-binary-search-tree/
// Inspired by : http://www.jiuzhang.com/solutions/validate-binary-search-tree/
// Author : Lei Cao
// Date : 2015-10-06
/**********************************************************************************
*
* Given a binary tree, determine if it is a valid binary search tree (BST).
*
* Assume a BST is defined as follows:
*
* The left subtree of a node contains only nodes with keys less than the node's key.
* The right subtree of a node contains only nodes with keys greater than the node's key.
* Both the left and right subtrees must also be binary search trees.
*
* confused what "{1,#,2,3}" means? > read more on how binary tree is serialized on OJ.
*
* OJ's Binary Tree Serialization:
*
* The serialization of a binary tree follows a level order traversal, where '#' signifies
* a path terminator where no node exists below.
*
* Here's an example:
*
* 1
* / \
* 2 3
* /
* 4
* \
* 5
*
* The above binary tree is serialized as "{1,2,3,#,#,4,#,#,5}".
*
*
**********************************************************************************/
package validateBinarySearchTree;
public class validateBinarySearchTree {
public boolean isValidBST(TreeNode root) {
return isBSTTraversal(root) && isBSTDivideAndConquer(root);
}
// Solution 1: Traversal
// The inorder sequence of a BST is a sorted ascending list
private int lastValue = 0; // the init value of it doesn't matter.
private boolean firstNode = true;
public boolean isBSTTraversal(TreeNode root) {
if (root == null) {
return true;
}
if (!isValidBST(root.left)) {
return false;
}
// firstNode is needed because of if firstNode is Integer.MIN_VALUE,
// even if we set lastValue to Integer.MIN_VALUE, it will still return false
if (!firstNode && lastValue >= root.val) {
return false;
}
firstNode = false;
lastValue = root.val;
if (!isValidBST(root.right)) {
return false;
}
return true;
}
// Solution 2: divide && conquer
private class Result {
int min;
int max;
boolean isBST;
Result(int min, int max, boolean isBST) {
this.min = min;
this.max = max;
this.isBST = isBST;
}
}
public boolean isBSTDivideAndConquer(TreeNode root) {
return isBSTHelper(root).isBST;
}
public Result isBSTHelper(TreeNode root) {
// For leaf node's left or right
if (root == null) {
// we set min to Integer.MAX_VALUE and max to Integer.MIN_VALUE
// because of in the previous level which is the leaf level,
// we want to set the min or max to that leaf node's val (in the last return line)
return new Result(Integer.MAX_VALUE, Integer.MIN_VALUE, true);
}
Result left = isBSTHelper(root.left);
Result right = isBSTHelper(root.right);
if (!left.isBST || !right.isBST) {
return new Result(0,0, false);
}
// For non-leaf node
if (root.left != null && left.max >= root.val
&& root.right != null && right.min <= root.val) {
return new Result(0, 0, false);
}
return new Result(Math.min(left.min, root.val),
Math.max(right.max, root.val), true);
}
}