-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain_swin_ezpz.py
257 lines (229 loc) · 9.35 KB
/
pretrain_swin_ezpz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
"""Pretrain SWIN VIT"""
from mpi4py import MPI
comm = MPI.COMM_WORLD
comm.Barrier()
from megatron.initialize import initialize_megatron
from megatron import get_args, get_timers, print_rank_0
from megatron.core.enums import ModelType
from megatron.core import parallel_state as mpu, tensor_parallel
from megatron.data.vit_dataset import build_train_valid_datasets
from megatron.core.tensor_parallel.cross_entropy import vocab_parallel_cross_entropy
from megatron.training import pretrain
from megatron.utils import average_losses_across_data_parallel_group
from megatron.arguments import core_transformer_config_from_args
from megatron.model.vision.swin_backbone_alcf import SwinTransformerV2Cr
import deepspeed
import deepspeed.comm as dist
import torch
import torch.nn.functional as F
# import deepspeed
# import deepspeed.comm as dist
import os
from functools import partial
def model_provider(pre_process=True, post_process=True):
args = get_args()
config = core_transformer_config_from_args(args)
assert pre_process and post_process
## Merge sequence parallel group with data parallel group for ZERO
if hasattr(mpu, "get_sequence_data_parallel_group"):
data_parallel_group = mpu.get_sequence_data_parallel_group()
elif hasattr(mpu, "get_data_parallel_group"):
data_parallel_group = mpu.get_sequence_data_parallel_group()
else:
data_parallel_group = None
## Create Zero context(?)
if args.use_MICS:
zero_init = deepspeed.zero.MICS_Init
else:
zero_init = deepspeed.zero.Init
remote_device = None if args.remote_device == 'none' else args.remote_device
with zero_init(data_parallel_group=data_parallel_group,
remote_device=remote_device,
config_dict_or_path=args.deepspeed_config_dict,
enabled=args.zero_stage == 3,
mpu=mpu):
## TODO: connect model to reflect args?
mlp_ratio = args.ffn_hidden_size / args.hidden_size
model = SwinTransformerV2Cr(
config=config,
img_size=[args.img_h, args.img_w],
patch_size=args.patch_dim,
depths=[args.num_layers],
num_heads=(args.num_attention_heads,),
in_chans=args.num_channels,
out_chans=args.num_channels,
embed_dim=args.hidden_size,
img_window_ratio=args.swin_window2image_ratio, # Modify number of windows
window_size=args.swin_window_size,
drop_path_rate=0, # Stochastic Depth
full_pos_embed=True, # TODO: Replace with ROPE?
rel_pos=False, # TODO: REMOVE from args?
mlp_ratio=mlp_ratio, # Fixed projection dimension
checkpoint_stages=False, # TODO: Enable activation checkpointing
residual=False, # TODO: What is residual doing?
)
return model
def get_batch(data_iterator):
args = get_args()
dp = mpu.get_data_parallel_world_size()
# sp = mpu.get_
dp_rank = mpu.get_data_parallel_rank()
dp_src_rank = mpu.get_data_parallel_src_rank()
assert args.fp16 or args.bf16
img_dtype = torch.float16 if args.fp16 else torch.bfloat16
## Generate Random TOY dataset
if args.use_toy_data:
## 1. First, only rank0 generates the data
## 2. rank0 scatters data to other sp_rank=1
dev = deepspeed.accelerator.get_accelerator().current_device()
## TODO: Change these environment variables with args
b = int(os.environ["GBS"])
c = args.num_channels
h = int(os.environ["IMG_W"])
w = int(os.environ["IMG_H"])
MBS = int(os.environ["MBS"])
# label_dtype = torch.int64
assert MBS == b / dp, f"Environment Var MBS (GBS ({b})/ DP ({dp}))is not local MBS: ({MBS})"
assert b % dp == 0, "global batch size is not divisible by dp degree"
data_dict = None
if dp_src_rank == 0: # First DP group will broadcast to other dp groups
## Generate TOY DATASET on rank0
# if "VIT3D" not in os.environ:
# else:
# d = int(os.environ["IMG_D"])
# full_img = torch.randn(b, c, h, w, d, dtype=img_dtype, device=dev)
num_classes = int(os.environ["NUM_CLASSES"])
full_img = torch.randn(b, c, h, w, dtype=img_dtype, device=dev)
full_label = torch.randn_like(full_img)
# full_label = torch.randint(num_classes, (b,), dtype=label_dtype, device=dev) ## B, S
## Partition data to replicate DP mechanism.
strt_idx = MBS * dp_rank
end_idx = strt_idx + MBS
data_dict = {
'image': full_img[strt_idx: end_idx],
'label': full_label[strt_idx: end_idx]
}
else:
# Broadcast data.
if data_iterator is not None:
data = next(data_iterator)
data_dict = {}
data_dict['image'] = data[0]
data_dict['label'] = data[0] # Use input as output for autoencoder
# data_dict['label'] = data[1]
else:
data_dict = None
data_i = tensor_parallel.broadcast_data(["label"], data_dict, img_dtype) ##TODO: lower precision, will it get angry at me if I set it to 16 or 32?
data_f = tensor_parallel.broadcast_data(["image"], data_dict, img_dtype)
labels = data_i["label"].contiguous()
images = data_f["image"].contiguous()
return images, labels
def loss_func(labels, output_tensor):
sp_rank = mpu.get_sequence_parallel_rank()
## TODO: How was bfloat working with .float()?
logits = output_tensor.contiguous()
# outputs = torch.argmax(logits, -1)
# correct = (outputs == labels).float()
with torch.no_grad():
mae_loss = F.l1_loss(logits, labels)
# with torch.no_grad():
# mean_loss = torch.mean(correct)
loss = F.mse_loss(logits, labels)
if sp_rank != 0:
## DROPOUT ALL, cut off gradients
loss = loss * 0
## TODO: Q. Why doesn't the below ruin our loss and acc as they get reduced across by "noise tokens"? (DP vs. SP looks perfect). Maybe the below isn't whats visualized on wandb?
averaged_loss = average_losses_across_data_parallel_group([loss, mae_loss])
return loss, {"loss": averaged_loss[0], "mae_loss": averaged_loss[1]}
def forward_step(data_iterator, model):
"""Forward step."""
timers = get_timers()
# Get the batch.
timers("batch-generator", log_level=2).start()
(
images,
labels,
) = get_batch(data_iterator)
timers("batch-generator").stop()
# Forward model. lm_labels
output_tensor = model(images)
return output_tensor, partial(loss_func, labels)
def train_valid_test_datasets_provider(train_val_test_num_samples):
"""Build train, valid, and test datasets."""
args = get_args()
print_rank_0(
"> building train, validation, and test datasets " "for VIT ..."
)
train_ds, valid_ds = build_train_valid_datasets(
data_path=args.data_path,
image_size=(args.img_h, args.img_w)
)
print_rank_0("> finished creating VIT datasets ...")
return train_ds, valid_ds, None
if __name__ == "__main__":
import ezpz as ez
RANK = ez.setup_torch(backend="deepspeed")
WORLD_SIZE = ez.get_world_size()
LOCAL_RANK = ez.get_local_rank()
DEVICE_TYPE = ez.dist.get_torch_device_type()
pretrain(
train_valid_test_datasets_provider,
model_provider,
ModelType.encoder_or_decoder,
forward_step,
args_defaults={'dataloader_type': 'cyclic', 'vision_pretraining': True}
)
# initialize_megatron(
# extra_args_provider={},
# args_defaults={'dataloader_type': 'cyclic', 'vision_pretraining': True},
# external_args={}
# )
# args = get_args()
# model = get_model(model_provider_func, model_type)
# model, optimizer, opt_param_scheduler = setup_model_and_optimizer(
# model_provider, model_type, teacher=False, data_post_process=data_post_process,
# build_train_valid_test_datasets_provider=None
# )
# args = get_args()
# embed_dim = args.hidden_dim
# depths = [2, 0, 0, 0]
# num_heads = [args.num_, 0, 0, 0]
# window_size = 16
# drop_path_rate = 0 ## stochastic depth
# output_avg = False # average output channel?
# dist.breakpoint()
# model = get_swin()
# img_size = [32, 32] # CIFAR
# patch_size = 16
# window_size = 8
# embed_dim = 128
# depths = [24]
# num_heads = [12]
# model = SwinTransformer(
# img_size=img_size,
# in_chans=3,
# patch_size=patch_size,
# embed_dim=embed_dim,
# depths=depths,
# num_heads=num_heads,
# window_size=window_size,
# drop_path_rate=0,
# output_avg=False,
# )
## Try out swin transformer
## get an output
## What would it take to utilize MDS parallelism framework?
## Probably just need to partition with sp group and match
## how each layers are called.
## Optimize wout parallelism
## Optimize with parallelism
# def get_swin(drop_path_rate=0, output_avg=False):
# args = get_args()
# window_size = 7
# embed_dim = 128
# depths = [2, 2, 18, 2]
# num_heads = [4, 8, 16, 32]
# from megatron.model.vision.swin_backbone_alcf import swinv2net_megatron_deepspeed
# model = swinv2net_megatron_deepspeed()
# torch.input
# print(f"model: {model}", flush=True)