-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
326 lines (278 loc) · 12.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import numpy as np
import os
import time
import random
import torch
import torch.nn as nn
import torch.optim as optim
from torch.nn.parameter import Parameter
from torch.nn import init
import torch.nn.functional as F
import torch.utils.data as data_utils
from torch.utils.data import Dataset, DataLoader, SubsetRandomSampler
import numpy as np
from torch.autograd import Variable
from scipy import sparse
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import matplotlib
import matplotlib.pyplot as plt
from matplotlib import cm
import torchsnooper
from scipy import signal
from torch import nn, einsum
import matplotlib.gridspec as gridspec
import itertools
from tools import select_quantile, load_data,num_paramters
from tqdm import tqdm
# Loading CPU-Net and support functions
from tools import get_ca, get_tail_slope, inf_train_gen, LambdaLR, weights_init_normal, compute_normalized_tail_slope, normalize_tail_slope, calculate_iou
from dataset import SplinterDataset, SEQ_LEN, LSPAN, RSPAN
from network import PositionalUNet, RNN, EugiFormer
from accelerate import Accelerator
from accelerate.utils import set_seed
from collections import OrderedDict
import accelerate
import time
import wandb
import sys
import os
#### TODO LIST:
# There is a hidden unused parameter somwhere. Where would it be?
# immigrate from sys.argv to argsparse
set_seed(42222)
os.environ["WANDB_DISABLED"] = sys.argv[7]
## Accelerator
ddp_kwargs = accelerate.DistributedDataParallelKwargs(find_unused_parameters=True, broadcast_buffers=False)
accelerator = Accelerator(kwargs_handlers=[ddp_kwargs], log_with="wandb", split_batches=True)
# # ## U-Net Training
# # - Define global parameter for the training
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.cuda.empty_cache()
# BATCH_SIZE = 4
BATCH_SIZE = 16
# ITERS = 3001
ITERS = 1
DECAY = 500
LRATE = 1e-3
target_real = torch.ones(BATCH_SIZE // accelerator.state.num_processes,1)
target_fake = torch.zeros(BATCH_SIZE // accelerator.state.num_processes,1)
## Immigrate to argsparse later
## sys input
if accelerator.is_main_process:
if len(sys.argv) < 3 and sys.argv[1] not in {"PU", "Eugi"}:
raise ValueError("Enter args => \n model_type {PU, Eugi}, \n num_epochs")
ATN_type = sys.argv[1]
num_epoch = int(sys.argv[2])
MJD = sys.argv[9] == "True"
accelerator.print(f"chosen ATN_type: {ATN_type}")
# # - Create infinite train generator. This generator can be called an infinite amount of time to draw from training dataset (with repetition)
train_loader, test_loader = load_data(BATCH_SIZE, MJD=MJD)
# print(next(iter(test_loader))[0].shape) # 16, 1, 800
# print(len(test_loader))
# raise ValueError
# - Create network structures and feed them into the DEVICE defined above
# - A: Detector Pulses
# - B: Simulated Pulses
# - BtoA: Ad-hoc Translation Network (Simulation to Data)
# - AtoB: Inverse Ad-hoc Translation Network (Data to Simulation)
if ATN_type == "PU":
netG_A2B = PositionalUNet()
netG_B2A = PositionalUNet()
elif ATN_type == "Eugi":
sample_A, _, _ = next(iter(train_loader))
seq_len = sample_A.size(-1)
h_dim = int(sys.argv[3])
dropout = float(sys.argv[4])
head = int(sys.argv[5])
num_layers = int(sys.argv[6])
reduce = sys.argv[8] == "True"
LRATE = float(sys.argv[10])
netG_A2B = EugiFormer(num_layers=num_layers, h_dim=h_dim, seq_len=seq_len, head=head, dropout=dropout, reduce=reduce)
netG_B2A = EugiFormer(num_layers=num_layers, h_dim=h_dim, seq_len=seq_len, head=head, dropout=dropout, reduce=reduce)
netD_A = RNN().apply(weights_init_normal)
netD_B = RNN().apply(weights_init_normal)
if accelerator.is_main_process:
accelerator.print(netG_B2A)
accelerator.print(f"num parameter of ATN: {num_paramters(netG_B2A)}")
accelerator.init_trackers(project_name="CPU", config={"param":num_paramters(netG_B2A), "model":str(netG_B2A)})
# - Create loss function and set up optimizer
# - BCELoss for discriminator
# - WFDist is a special L1loss where additional weight is added to the rising and falling edge of the waveform
class WFDist(nn.Module):
'''
Waveform Distance, this is a special type of L1 loss which gives more weight to the
rising and falling edge of each pulse
'''
def __init__(self, dev):
super(WFDist, self).__init__()
self.dev = dev
self.criterion = nn.L1Loss().to(dev)
self.weight = torch.tensor([2.0]*LSPAN+[10.0]*150+[5.0]*(RSPAN-150)).to(dev)
def forward(self, x1, x2):
loss_out = torch.tensor(0.0, dtype=torch.float32).to(self.dev)
for i in range(x1.size(0)):
loss_out = loss_out + self.criterion(x1[i].view(-1)*self.weight, x2[i].view(-1)*self.weight) # /self.weight.sum()
return loss_out/x1.size(0)
# # In[13]:
#### MODEL TRAINING ####
optimizer_G = torch.optim.Adam(itertools.chain(netG_A2B.parameters(), netG_B2A.parameters()),lr=LRATE, betas=(0.5, 0.999))
optimizer_D_A = torch.optim.Adam(netD_A.parameters(), lr=LRATE, betas=(0.5, 0.999))
optimizer_D_B = torch.optim.Adam(netD_B.parameters(), lr=LRATE, betas=(0.5, 0.999))
lr_scheduler_G = torch.optim.lr_scheduler.LambdaLR(optimizer_G, lr_lambda=LambdaLR(ITERS, 0, DECAY).step)
lr_scheduler_D_A = torch.optim.lr_scheduler.LambdaLR(optimizer_D_A, lr_lambda=LambdaLR(ITERS, 0, DECAY).step)
lr_scheduler_D_B = torch.optim.lr_scheduler.LambdaLR(optimizer_D_B, lr_lambda=LambdaLR(ITERS, 0, DECAY).step)
criterion_GAN = nn.BCELoss()#.to(DEVICE)
netG_A2B, netG_B2A, netD_A, netD_B, optimizer_G, optimizer_D_A, optimizer_D_B, lr_scheduler_G, lr_scheduler_D_A, lr_scheduler_D_B, train_loader, test_loader, criterion_GAN = accelerator.prepare(netG_A2B, netG_B2A, netD_A, netD_B, optimizer_G, optimizer_D_A, optimizer_D_B, lr_scheduler_G, lr_scheduler_D_A, lr_scheduler_D_B, train_loader, test_loader, criterion_GAN)
dev = accelerator.device
target_real, target_fake = target_real.to(dev), target_fake.to(dev)
criterion_cycle = WFDist(dev)#.to(DEVICE)
criterion_identity = WFDist(dev)#.to(DEVICE)
## train_loader size is 1155
## val_loader size is 495
netG_A2B.train()
netG_B2A.train()
start = time.time()
train_end = len(train_loader)
test_end = len(test_loader)
for epoch in range(num_epoch):
# for iteration in tqdm(range(ITERS)):
#########################
# A: DetectorPulses
# B: Simulated Pulses
#########################
for i, (real_A, real_B, _) in enumerate(train_loader):
# real_A, real_B = data
# real_A = real_A.to(DEVICE).float()
# real_B = real_B.to(DEVICE).float()
###### Generators A2B and B2A ######
optimizer_G.zero_grad()
# Identity loss
same_B = netG_A2B(real_B)
loss_identity_B = criterion_identity(same_B, real_B)*5
same_A = netG_B2A(real_A)
loss_identity_A = criterion_identity(same_A, real_A)*5
# GAN loss
fake_B = netG_A2B(real_A)
pred_fake = netD_B(fake_B)
loss_GAN_A2B = criterion_GAN(pred_fake, target_real)
fake_A = netG_B2A(real_B)
pred_fake = netD_A(fake_A)
loss_GAN_B2A = criterion_GAN(pred_fake,target_real)
# # Cycle loss
recovered_A = netG_B2A(fake_B)
loss_cycle_ABA = criterion_cycle(recovered_A, real_A)*10.0
recovered_B = netG_A2B(fake_A)
loss_cycle_BAB = criterion_cycle(recovered_B, real_B)*10.0
# Total loss
loss_G = loss_identity_A + loss_identity_B + loss_cycle_ABA + loss_cycle_BAB + loss_GAN_A2B + loss_GAN_B2A
accelerator.backward(loss_G)
# torch.nn.utils.clip_grad_norm_(netG_B2A.parameters(), 1)
# torch.nn.utils.clip_grad_norm_(netG_A2B.parameters(), 1)
optimizer_G.step()
###### Discriminator A (Detector Pulses) ######
optimizer_D_A.zero_grad()
# Real loss
pred_real = netD_A(real_A)
loss_D_real = criterion_GAN(pred_real, target_real)
# Fake loss
pred_fake = netD_A(fake_A.detach())
loss_D_fake = criterion_GAN(pred_fake, target_fake)
# Total loss
loss_D_A = loss_D_real + loss_D_fake
accelerator.backward(loss_D_A)
optimizer_D_A.step()
###### Discriminator B (Simulated Pulses) ######
optimizer_D_B.zero_grad()
# Real loss
pred_real = netD_B(real_B)
loss_D_real = criterion_GAN(pred_real, target_real)
# Fake loss
pred_fake = netD_B(fake_B.detach())
loss_D_fake = criterion_GAN(pred_fake, target_fake)
# Total loss
loss_D_B = loss_D_real + loss_D_fake
accelerator.backward(loss_D_B)
optimizer_D_B.step()
percentage_done = (epoch * train_end + i) / (train_end * num_epoch) * 100
accelerator.print(f"[Training {percentage_done:.1f}% Done] Epoch: {epoch} \n Total Losses: Total: {loss_G + loss_D_A + loss_D_B:.4f} loss_G: {loss_G:.4f} loss_D_A: {loss_D_A:.4f} loss_D_B: {loss_D_B:.4f}")
accelerator.log({
"loss_Total": loss_G + loss_D_A + loss_D_B,
"loss_G": loss_G,
"loss_D_A": loss_D_A,
"loss_D_B": loss_D_B
})
with torch.no_grad():
accelerator.print("TORCH NO GRAD SKRRRRT")
## test loss to check overfitting
loss_G = 0
loss_D_A = 0
loss_D_B = 0
for i, (real_A, real_B, _) in enumerate(test_loader):
###### Generators A2B and B2A ######
# Identity loss
same_B = netG_A2B(real_B)
loss_identity_B = criterion_identity(same_B, real_B)*5
same_A = netG_B2A(real_A)
loss_identity_A = criterion_identity(same_A, real_A)*5
# GAN loss
fake_B = netG_A2B(real_A)
pred_fake = netD_B(fake_B)
loss_GAN_A2B = criterion_GAN(pred_fake, target_real)
fake_A = netG_B2A(real_B)
pred_fake = netD_A(fake_A)
loss_GAN_B2A = criterion_GAN(pred_fake,target_real)
# Cycle loss
recovered_A = netG_B2A(fake_B)
loss_cycle_ABA = criterion_cycle(recovered_A, real_A)*10.0
recovered_B = netG_A2B(fake_A)
loss_cycle_BAB = criterion_cycle(recovered_B, real_B)*10.0
# Total loss
loss_G = loss_G + loss_identity_A + loss_identity_B + loss_cycle_ABA + loss_cycle_BAB + loss_GAN_A2B + loss_GAN_B2A
###### Discriminator A (Detector Pulses) ######
# Real loss
pred_real = netD_A(real_A)
loss_D_real = criterion_GAN(pred_real, target_real)
# Fake loss
pred_fake = netD_A(fake_A.detach())
loss_D_fake = criterion_GAN(pred_fake, target_fake)
# Total loss
loss_D_A = loss_D_A + loss_D_real + loss_D_fake
###### Discriminator B (Simulated Pulses) ######
# Real loss
pred_real = netD_B(real_B)
loss_D_real = criterion_GAN(pred_real, target_real)
# Fake loss
pred_fake = netD_B(fake_B.detach())
loss_D_fake = criterion_GAN(pred_fake, target_fake)
# Total loss
loss_D_B = loss_D_B + loss_D_real + loss_D_fake
percentage_done = i / test_end * 100
accelerator.print(f"[Testing {percentage_done:.1f}% Done] Epoch: {epoch}")
accelerator.print({
"TEST mean loss_Total": (loss_G.item() + loss_D_A.item() + loss_D_B.item()) / test_end,
"TEST mean loss_G": loss_G.item() / test_end,
"TEST mean loss_D_A": loss_D_A.item() / test_end,
"TEST mean loss_D_B": loss_D_B.item() / test_end
})
accelerator.log({
"TEST mean loss_Total": (loss_G + loss_D_A + loss_D_B) / test_end,
"TEST mean loss_G": loss_G / test_end,
"TEST mean loss_D_A": loss_D_A / test_end,
"TEST mean loss_D_B": loss_D_B / test_end
})
## the following code gives inaccurate HIOU, probably due to some interaction with accelerator?
# ts, gan_ts, ca, gan_ca, sim_ca = compute_normalized_tail_slope(netG_B2A, test_loader, DEVICE, accelerator)
# n_ts, n_gan_ts = normalize_tail_slope(ts, gan_ts)
# accelerator.log({"HIoU - normalized tail slope": calculate_iou(ts, gan_ts, rg=np.linspace(-4,16,50), normed=True)})
# accelerator.log({"HIoU - maximal current amplitude": calculate_iou(gan_ca, sim_ca, rg=np.linspace(0.05,0.12,50))})
#-----------------------------------------------
end = time.time()
accelerator.print(f"Time taken to train: {end - start}")
accelerator.log({"total_train_time": end-start})
# - Save trained ATN and IATN
torch.save(netG_B2A.state_dict(), f"./{ATN_type}/" + ATN_type + '_ATN.pt')
torch.save(netG_A2B.state_dict(), f"./{ATN_type}/" + ATN_type + '_IATN.pt')
###END####
## Alert the training is done + wrap up wandb
accelerator.end_training()