Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix the SGU example and unit tests #161

Open
jlperla opened this issue Aug 24, 2022 · 0 comments
Open

Fix the SGU example and unit tests #161

jlperla opened this issue Aug 24, 2022 · 0 comments

Comments

@jlperla
Copy link
Member

jlperla commented Aug 24, 2022

Something like

#sgu.jl
#Code to implement Schmitt-Grohe and Uribe (2003, JIE) Model 2
#Shamelessly copied from Dynare .mod file of Cesa-Bianchi (2012)
#https://sites.google.com/site/ambropo/dynarecodes
#and from Dynare .mod file of Pfeifer (2019)
#https://github.com/JohannesPfeifer/DSGE_mod/tree/master/SGU_2003
#Rewritten from Dynare to Schmitt-Grohe and Uribe timing conventions
#following http://www.columbia.edu/~mu2166/closing/edeir_model.m
function sgu()
    ∞ = Inf
    # Parameters
    @variables γ, ω, ρ, σe, δ, ψ, α, ϕ, β, r_w, d_bar
    # x and y
    @variables t::Integer, d(..), c(..), h(..), GDP(..), i(..), k(..), a(..), λ(..), tb(..),
               ca(..), riskpremium(..), r(..), kfu(..)
    @variables Ω_1
    x = [d, k, r, riskpremium, a]
    y = [c, h, GDP, i, kfu, λ, tb, ca]
    p = [γ, ω, ρ, σe, δ, ψ, α, ϕ, β, r_w, d_bar, Ω_1]
    # Model equations
    # Rewritten from Dynare to Schmitt-Grohe and Uribe timing conventions
    H = [d(t+1) - (1 + exp(r(t))) * d(t) + exp(GDP(t)) - exp(c(t)) - exp(i(t)) -/ 2) * (exp(k(t+1)) - exp(k(t)))^2, #Debt evolution
        exp(GDP(t)) - exp(a(t)) * (exp(k(t))^α) * (exp(h(t))^(1 - α)), #Production function
        exp(k(t + 1)) - exp(i(t)) - (1 - δ) * exp(k(t)), #Capital evolution
        exp(λ(t)) - β * (1 + exp(r(t+1))) * exp(λ(t + 1)), #Euler equation
        (exp(c(t)) - ((exp(h(t))^ω) / ω))^(-γ) - exp(λ(t)), #Marginal utility
        ((exp(c(t)) - ((exp(h(t))^ω) / ω))^(-γ)) * (exp(h(t))^- 1)) -
        exp(λ(t)) * (1 - α) * exp(GDP(t)) / exp(h(t)), #Labor FOC
        exp(λ(t)) * (1 + ϕ * (exp(k(t + 1)) - exp(k(t)))) -
        β *
        exp(λ(t + 1)) ** exp(GDP(t + 1)) / exp(k(t + 1)) + 1 - δ + ϕ * (exp(kfu(t + 1)) - exp(k(t + 1)))), #Investment FOC
        exp(r(t+1)) - r_w - riskpremium(t+1), #Interest rate
        riskpremium(t+1) - ψ * (exp(d(t+1) - d_bar) - 1), #Risk premium
        tb(t) - 1 +
        ((exp(c(t)) + exp(i(t)) +/ 2) * (exp(k(t + 1)) - exp(k(t)))^2) / exp(GDP(t))), #Trade Balance
        ca(t) - (1 / -exp(GDP(t))) * (d(t) - d(t + 1)), #Current Account
        kfu(t) - k(t + 1), #auxiliary future variable
        a(t + 1) - ρ * a(t)] #TFP evolution
    #Define representations for steady state
    hstar = ((1 - α) */ (r_w + δ))^/ (1 - α)))^(1 /- 1))
    kstar = hstar / (((r_w + δ) / α)^(1 / (1 - α)))
    istar = δ * kstar
    GDPstar = (kstar^α) * (hstar^(1 - α))
    cstar = GDPstar - istar - r_w * d_bar
    tbstar = 1 - ((cstar + istar) / GDPstar)
    λstar = (cstar - ((hstar^ω) / ω))^(-γ)
    #Steady state values
    steady_states = [a(∞) ~ 0, kfu(∞) ~ log(kstar),
                     d(∞) ~ d_bar, c(∞) ~ log(cstar), h(∞) ~ log(hstar),
                     GDP(∞) ~ log(GDPstar), i(∞) ~ log(istar), k(∞) ~ log(kstar),
                     λ(∞) ~ log(λstar), tb(∞) ~ tbstar, ca(∞) ~ 0, riskpremium(∞) ~ 0,
                     r(∞) ~ log((1 - β) / β)]
    n_ϵ = 1
    n_x = length(x)
    n_y = length(y)
    Γ = reshape([σe], n_ϵ, n_ϵ)
    η = reshape([0, 0, 0, 0, 1], length(x), n_ϵ) # η is n_x * n_ϵ matrix

    n_z = 3 # number of observables
	Q = zeros(n_z, n_x + n_y) # the order is [y, x]
    Q[1, 3] = 1.0 # y i.e. GDP
    Q[2, 8] = 1.0 # ca
    Q[3, 11] = 1.0 # r

    Ω = [Ω_1, Ω_1, Ω_1]

    return H, (; t, x, y, p, steady_states, Γ, η, Ω, Q), "sgu"
end
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant