-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy path21_solutions-warmup.qmd
167 lines (106 loc) · 6.24 KB
/
21_solutions-warmup.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Solutions to Warmup Questions {.unnumbered}
## Linear Algebra {.unnumbered}
### Vectors {.unnumbered}
Define the vectors $u = \begin{pmatrix} 1 \\2 \\3 \end{pmatrix}$, $v = \begin{pmatrix} 4\\5\\6 \end{pmatrix}$, and the scalar $c = 2$.
1. $u + v = \begin{pmatrix}5\\7\\9\end{pmatrix}$
2. $cv = \begin{pmatrix}8\\10\\12\end{pmatrix}$
3. $u \cdot v = 1(4) + 2(5) + 3(6) = 32$
If you are having trouble with these problems, please review Section @sec-vector-def "Working with Vectors" in Chapter @sec-linearalgebra.
Are the following sets of vectors linearly independent?
1. $u = \begin{pmatrix} 1\\ 2\end{pmatrix}$, $v = \begin{pmatrix} 2\\4\end{pmatrix}$
$\leadsto$ No: $$2u = \begin{pmatrix} 2\\ 4\end{pmatrix}, v = \begin{pmatrix} 2\\ 4\end{pmatrix}$$ so infinitely many linear combinations of $u$ and $v$ that amount to 0 exist.
2. $u = \begin{pmatrix} 1\\ 2\\ 5 \end{pmatrix}$, $v = \begin{pmatrix} 3\\ 7\\ 9 \end{pmatrix}$
$\leadsto$ Yes: we cannot find linear combination of these two vectors that would amount to zero.
3. $a = \begin{pmatrix} 2\\ -1\\ 1 \end{pmatrix}$, $b = \begin{pmatrix} 3\\ -4\\ -2 \end{pmatrix}$, $c = \begin{pmatrix} 5\\ -10\\ -8 \end{pmatrix}$
$\leadsto$ No: After playing around with some numbers, we can find that $$-2a = \begin{pmatrix} -4\\ 2\\ -2 \end{pmatrix}, 3b = \begin{pmatrix} 9\\ -12\\ -6 \end{pmatrix}, -1c = \begin{pmatrix} -5\\ 10\\ 8 \end{pmatrix}$$
So $$-2a + 3b - c = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
i.e., a linear combination of these three vectors that would amount to zero exists.
If you are having trouble with these problems, please review Section @sec-linearindependence.
### Matrices {.unnumbered}
$${\bf A}=\begin{pmatrix}
7 & 5 & 1 \\
11 & 9 & 3 \\
2 & 14 & 21 \\
4 & 1 & 5
\end{pmatrix}$$
What is the dimensionality of matrix ${\bf A}$? 4 $\times$ 3
What is the element $a_{23}$ of ${\bf A}$? 3
Given that
$${\bf B}=\begin{pmatrix}
1 & 2 & 8 \\
3 & 9 & 11 \\
4 & 7 & 5 \\
5 & 1 & 9
\end{pmatrix}$$
$$\mathbf{A} + \mathbf{B} = \begin{pmatrix}
8 & 7 & 9 \\
14 & 18 & 14 \\
6 & 21 & 26 \\
9 & 2 & 14
\end{pmatrix}$$
Given that
$${\bf C}=\begin{pmatrix}
1 & 2 & 8 \\
3 & 9 & 11 \\
4 & 7 & 5 \\
\end{pmatrix}$$
$$\mathbf{A} + \mathbf{C} = \text{No solution, matrices non-conformable}$$
Given that
$$c = 2$$
$$c\textbf{A} = \begin{pmatrix}
14 & 10 & 2 \\
22 & 18 & 6 \\
4 & 28 & 42 \\
8 & 2 & 10
\end{pmatrix}$$
If you are having trouble with these problems, please review Section @sec-matrixbasics.
## Operations {.unnumbered}
### Summation {.unnumbered}
Simplify the following
1. $\sum\limits_{i = 1}^3 i = 1 + 2+ 3 = 6$
2. $\sum\limits_{k = 1}^3(3k + 2) = 3\sum\limits_{k=1}^3k + \sum\limits_{k=1}^3 2= 3\times 6 + 3\times 2 = 24$
3. $\sum\limits_{i= 1}^4 (3k + i + 2) = 3\sum\limits_{i= 1}^4k + \sum\limits_{i= 1}^4i + \sum\limits_{i= 1}^42 = 12k + 10 + 8 = 12k + 18$
### Products {.unnumbered}
1. $\prod\limits_{i= 1}^3 i = 1\cdot 2\cdot 3 = 6$
2. $\prod\limits_{k=1}^3(3k + 2) = (3 + 2)\cdot (6 + 2)\cdot (9 + 2) = 440$
To review this material, please see Section @ref-sum-notation.
### Logs and exponents {.unnumbered}
Simplify the following
1. $4^2 = 16$
2. $4^2 2^3 = 2^{2\cdot 2}2^{3} = 2^{4 + 3} = 128$
3. $\log_{10}100 = \log_{10}10^2 = 2$
4. $\log_{2}4 = \log_{2}2^2 = 2$
5. when $\log$ is the natural log, $\log e = \log_{e} e^1 = 1$
6. when $a, b, c$ are each constants, $e^a e^b e^c = e^{a + b + c}$,
7. $\log 0 = \text{undefined}$ -- no exponentiation of anything will result in a 0.
8. $e^0 = 1$ -- any number raised to the 0 is always 1.
9. $e^1 = e$ -- any number raised to the 1 is always itself
10. $\log e^2 = \log_e e^2 = 2$
To review this material, please see Section @sec-logexponents
## Limits {.unnumbered}
Find the limit of the following.
1. $\lim\limits_{x \to 2} (x - 1) = 1$
2. $\lim\limits_{x \to 2} \frac{(x - 2) (x - 1)}{(x - 2)} = 1$, though note that the original function $\frac{(x - 2) (x - 1)}{(x - 2)}$ would have been undefined at $x = 2$ because of a divide by zero problem; otherwise it would have been equal to $x - 1$.
3. $\lim\limits_{x \to 2}\frac{x^2 - 3x + 2}{x- 2} = 1$, same as above.
To review this material please see Section @sec-limitsfun
## Calculus {.unnumbered}
For each of the following functions $f(x)$, find the derivative $f'(x)$ or $\frac{d}{dx}f(x)$
1. $f(x)=c$, $f'(x) = 0$
2. $f(x)=x$, $f'(x) = 1$
3. $f(x)=x^2$, $f'(x) = 2x$
4. $f(x)=x^3$, $f'(x) = 3x^2$
5. $f(x)=3x^2+2x^{1/3}$, $f'(x) = 6x + \frac{2}{3}x^{-2/3}$
6. $f(x)=(x^3)(2x^4)$, $f'(x) = \frac{d}{dx}2x^7 = 14x^6$
For a review, please see Section @sec-derivintro - @sec-derivpoly
## Optimization {.unnumbered}
For each of the followng functions $f(x)$, does a maximum and minimum exist in the domain $x \in \mathbf{R}$? If so, for what are those values and for which values of $x$?
1. $f(x) = x$ $\leadsto$ neither exists.
2. $f(x) = x^2$ $\leadsto$ a minimum $f(x) = 0$ exists at $x = 0$, but not a maximum.
3. $f(x) = -(x - 2)^2$ $\leadsto$ a maximum $f(x) = 0$ exists at $x = 2$, but not a minimum.
If you are stuck, please try sketching out a picture of each of the functions.
## Probability {.unnumbered}
1. If there are 12 cards, numbered 1 to 12, and 4 cards are chosen, $\binom{12}{4} = \frac{12\cdot 11\cdot 10\cdot 9}{4!} = 495$ possible hands exist (unordered, without replacement) .
2. Let $A = \{1,3,5,7,8\}$ and $B = \{2,4,7,8,12,13\}$. Then $A \cup B = \{1, 2, 3, 4, 5, 7, 8, 12, 13\}$, $A \cap B = \{7, 8\}$? If $A$ is a subset of the Sample Space $S = \{1,2,3,4,5,6,7,8,9,10\}$, then the complement $A^C = \{2, 4, 6, 9, 10\}$
3. If we roll two fair dice, what is the probability that their sum would be 11? $\leadsto \frac{1}{18}$
4. If we roll two fair dice, what is the probability that their sum would be 12? $\leadsto \frac{1}{36}$. There are two independent dice, so $6^2 = 36$ options in total. While the previous question had two possibilities for a sum of 11 (5,6 and 6,5), there is only one possibility out of 36 for a sum of 12 (6,6).
For a review, please see Sections @sec-setoper - @sec-probdef