-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmodel_summary.txt
104 lines (104 loc) · 9.69 KB
/
model_summary.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
Model: "ASR_model"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_1 (InputLayer) [(None, None, 52)] 0
__________________________________________________________________________________________________
conv1d (Conv1D) (None, None, 50) 39050 input_1[0][0]
__________________________________________________________________________________________________
batch_normalization (BatchNorma (None, None, 50) 200 conv1d[0][0]
__________________________________________________________________________________________________
p_re_lu (PReLU) (None, None, 50) 50 batch_normalization[0][0]
__________________________________________________________________________________________________
conv1d_1 (Conv1D) (None, None, 50) 37550 p_re_lu[0][0]
__________________________________________________________________________________________________
batch_normalization_1 (BatchNor (None, None, 50) 200 conv1d_1[0][0]
__________________________________________________________________________________________________
p_re_lu_1 (PReLU) (None, None, 50) 50 batch_normalization_1[0][0]
__________________________________________________________________________________________________
conv1d_2 (Conv1D) (None, None, 50) 37550 p_re_lu_1[0][0]
__________________________________________________________________________________________________
batch_normalization_2 (BatchNor (None, None, 50) 200 conv1d_2[0][0]
__________________________________________________________________________________________________
p_re_lu_2 (PReLU) (None, None, 50) 50 batch_normalization_2[0][0]
__________________________________________________________________________________________________
add (Add) (None, None, 50) 0 p_re_lu[0][0]
p_re_lu_2[0][0]
__________________________________________________________________________________________________
conv1d_3 (Conv1D) (None, None, 50) 37550 add[0][0]
__________________________________________________________________________________________________
batch_normalization_3 (BatchNor (None, None, 50) 200 conv1d_3[0][0]
__________________________________________________________________________________________________
p_re_lu_3 (PReLU) (None, None, 50) 50 batch_normalization_3[0][0]
__________________________________________________________________________________________________
conv1d_4 (Conv1D) (None, None, 50) 37550 p_re_lu_3[0][0]
__________________________________________________________________________________________________
batch_normalization_4 (BatchNor (None, None, 50) 200 conv1d_4[0][0]
__________________________________________________________________________________________________
p_re_lu_4 (PReLU) (None, None, 50) 50 batch_normalization_4[0][0]
__________________________________________________________________________________________________
add_1 (Add) (None, None, 50) 0 add[0][0]
p_re_lu_4[0][0]
__________________________________________________________________________________________________
conv1d_5 (Conv1D) (None, None, 50) 37550 add_1[0][0]
__________________________________________________________________________________________________
batch_normalization_5 (BatchNor (None, None, 50) 200 conv1d_5[0][0]
__________________________________________________________________________________________________
p_re_lu_5 (PReLU) (None, None, 50) 50 batch_normalization_5[0][0]
__________________________________________________________________________________________________
conv1d_6 (Conv1D) (None, None, 50) 37550 p_re_lu_5[0][0]
__________________________________________________________________________________________________
batch_normalization_6 (BatchNor (None, None, 50) 200 conv1d_6[0][0]
__________________________________________________________________________________________________
p_re_lu_6 (PReLU) (None, None, 50) 50 batch_normalization_6[0][0]
__________________________________________________________________________________________________
add_2 (Add) (None, None, 50) 0 add_1[0][0]
p_re_lu_6[0][0]
__________________________________________________________________________________________________
conv1d_7 (Conv1D) (None, None, 50) 37550 add_2[0][0]
__________________________________________________________________________________________________
batch_normalization_7 (BatchNor (None, None, 50) 200 conv1d_7[0][0]
__________________________________________________________________________________________________
p_re_lu_7 (PReLU) (None, None, 50) 50 batch_normalization_7[0][0]
__________________________________________________________________________________________________
conv1d_8 (Conv1D) (None, None, 50) 37550 p_re_lu_7[0][0]
__________________________________________________________________________________________________
batch_normalization_8 (BatchNor (None, None, 50) 200 conv1d_8[0][0]
__________________________________________________________________________________________________
p_re_lu_8 (PReLU) (None, None, 50) 50 batch_normalization_8[0][0]
__________________________________________________________________________________________________
add_3 (Add) (None, None, 50) 0 add_2[0][0]
p_re_lu_8[0][0]
__________________________________________________________________________________________________
conv1d_9 (Conv1D) (None, None, 50) 37550 add_3[0][0]
__________________________________________________________________________________________________
batch_normalization_9 (BatchNor (None, None, 50) 200 conv1d_9[0][0]
__________________________________________________________________________________________________
p_re_lu_9 (PReLU) (None, None, 50) 50 batch_normalization_9[0][0]
__________________________________________________________________________________________________
conv1d_10 (Conv1D) (None, None, 50) 37550 p_re_lu_9[0][0]
__________________________________________________________________________________________________
batch_normalization_10 (BatchNo (None, None, 50) 200 conv1d_10[0][0]
__________________________________________________________________________________________________
p_re_lu_10 (PReLU) (None, None, 50) 50 batch_normalization_10[0][0]
__________________________________________________________________________________________________
add_4 (Add) (None, None, 50) 0 add_3[0][0]
p_re_lu_10[0][0]
__________________________________________________________________________________________________
bidirectional (Bidirectional) (None, None, 340) 300560 add_4[0][0]
__________________________________________________________________________________________________
bidirectional_1 (Bidirectional) (None, None, 340) 694960 bidirectional[0][0]
__________________________________________________________________________________________________
dense (Dense) (None, None, 340) 115940 bidirectional_1[0][0]
__________________________________________________________________________________________________
re_lu (ReLU) (None, None, 340) 0 dense[0][0]
__________________________________________________________________________________________________
dense_1 (Dense) (None, None, 64) 21824 re_lu[0][0]
__________________________________________________________________________________________________
tf.nn.softmax (TFOpLambda) (None, None, 64) 0 dense_1[0][0]
==================================================================================================
Total params: 1,550,584
Trainable params: 1,549,484
Non-trainable params: 1,100
__________________________________________________________________________________________________
add Codeadd Markdown