-
Notifications
You must be signed in to change notification settings - Fork 89
/
Copy pathrun_train_model.py
515 lines (491 loc) · 26.4 KB
/
run_train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
# -*- coding:utf-8 -*-
"""
Author: BigCat
Modifier: KittenCN
"""
import datetime
import os
import time
import json
import argparse
import numpy as np
import pandas as pd
import warnings
from common import get_data_run, setMiniargs, get_current_number, run_predict, predict_run,init, red_graph, blue_graph, pred_key_d, red_sess, blue_sess
from common import tf as predict_tf
from config import *
from modeling import LstmWithCRFModel, SignalLstmModel, tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
from loguru import logger
import math
warnings.filterwarnings('ignore')
# tf.enable_eager_execution() # 开启动态图
gpus = tf.config.list_physical_devices("GPU")
if gpus:
tf.config.experimental.set_memory_growth(gpus[0],True)
parser = argparse.ArgumentParser()
parser.add_argument('--name', default="qxc", type=str, help="选择训练数据")
parser.add_argument('--windows_size', default='3', type=str, help="训练窗口大小,如有多个,用','隔开")
parser.add_argument('--red_epochs', default=-1, type=int, help="红球训练轮数")
parser.add_argument('--blue_epochs', default=-1, type=int, help="蓝球训练轮数")
parser.add_argument('--batch_size', default=-1, type=int, help="集合数量")
parser.add_argument('--predict_pro', default=0, type=int, help="更新batch_size")
parser.add_argument('--epochs', default=1, type=int, help="训练轮数(红蓝球交叉训练)")
parser.add_argument('--cq', default=0, type=int, help="是否使用出球顺序,0:不使用(即按从小到大排序),1:使用")
parser.add_argument('--download_data', default=1, type=int, help="是否下载数据")
args = parser.parse_args()
pred_key = {}
ori_data = None
save_epoch = 100
save_interval = 600
last_save_time = time.time()
def create_train_data(name, windows):
""" 创建训练数据
:param name: 玩法,双色球/大乐透
:param windows: 训练窗口
:return:
"""
global ori_data
if ori_data is None:
if args.cq == 1 and name == "kl8":
ori_data = pd.read_csv("{}{}".format(name_path[name]["path"], data_cq_file_name))
else:
ori_data = pd.read_csv("{}{}".format(name_path[name]["path"], data_file_name))
data = ori_data.copy()
if not len(data):
raise logger.error(" 请执行 get_data.py 进行数据下载!")
else:
# 创建模型文件夹
if not os.path.exists(model_path):
os.mkdir(model_path)
logger.info("训练数据已加载! ")
data = data.iloc[:, 2:].values
logger.info("训练集数据维度: {}".format(data.shape))
x_data, y_data = [], []
for i in range(len(data) - windows - 1):
sub_data = data[i:(i+windows+1), :]
x_data.append(sub_data[1:])
y_data.append(sub_data[0])
cut_num = model_args[name]["model_args"]["red_sequence_len"]
return {
"red": {
"x_data": np.array(x_data)[:, :, :cut_num], "y_data": np.array(y_data)[:, :cut_num]
},
"blue": {
"x_data": np.array(x_data)[:, :, cut_num:], "y_data": np.array(y_data)[:, cut_num:]
}
}
def train_red_ball_model(name, x_data, y_data):
""" 红球模型训练
:param name: 玩法
:param x_data: 训练样本
:param y_data: 训练标签
:return:
"""
global last_save_time
m_args = model_args[name]
if name not in ["pls", "qxc", "sd"]:
x_data = x_data - 1
y_data = y_data - 1
data_len = x_data.shape[0]
logger.info("特征数据维度: {}".format(x_data.shape))
logger.info("标签数据维度: {}".format(y_data.shape))
with tf.compat.v1.Session() as sess:
red_ball_model = LstmWithCRFModel(
batch_size=m_args["model_args"]["batch_size"],
n_class=m_args["model_args"]["red_n_class"],
ball_num=m_args["model_args"]["sequence_len"] if name == "ssq" else m_args["model_args"]["red_sequence_len"],
w_size=m_args["model_args"]["windows_size"],
embedding_size=m_args["model_args"]["red_embedding_size"],
words_size=m_args["model_args"]["red_n_class"],
hidden_size=m_args["model_args"]["red_hidden_size"],
layer_size=m_args["model_args"]["red_layer_size"]
)
train_step = tf.compat.v1.train.AdamOptimizer(
learning_rate=m_args["train_args"]["red_learning_rate"],
beta1=m_args["train_args"]["red_beta1"],
beta2=m_args["train_args"]["red_beta2"],
epsilon=m_args["train_args"]["red_epsilon"],
use_locking=False,
name='Adam'
).minimize(red_ball_model.loss)
sess.run(tf.compat.v1.global_variables_initializer())
saver = tf.compat.v1.train.Saver()
syspath = model_path + model_args[args.name]["pathname"]['name'] + str(m_args["model_args"]["windows_size"]) + model_args[args.name]["subpath"]['red']
if os.path.exists(syspath):
# saver = tf.compat.v1.train.Saver()
saver.restore(sess, "{}red_ball_model.ckpt".format(syspath))
logger.info("已加载红球模型!")
if len(x_data) % m_args["model_args"]["batch_size"] != 0:
diff = m_args["model_args"]["batch_size"] - (len(x_data) % m_args["model_args"]["batch_size"])
while diff > 0:
random_index = np.random.randint(0, data_len)
x_data = np.append(x_data, [x_data[random_index]], axis=0)
y_data = np.append(y_data, [y_data[random_index]], axis=0)
diff -= 1
dataset = tf.compat.v1.data.Dataset.from_tensor_slices((x_data, y_data))
dataset = dataset.shuffle(buffer_size=data_len)
dataset = dataset.batch(m_args["model_args"]["batch_size"])
dataset = dataset.repeat(m_args["model_args"]["red_epochs"])
iterator = dataset.make_one_shot_iterator()
nextelement = iterator.get_next()
index = 0
epoch = 0
epochindex = math.ceil(data_len / m_args["model_args"]["batch_size"])
totalindex = epochindex * m_args["model_args"]["red_epochs"]
epoch_start_time = time.time()
perindex = 0
totalloss = 0.0
while True:
try:
tf.compat.v1.get_default_graph().finalize()
x, y = sess.run(nextelement)
# batch_size = len(x)
# diff = m_args["model_args"]["batch_size"] - batch_size
# while diff > 0:
# random_index = np.random.randint(0, data_len)
# x = np.append(x, [x_data[random_index]], axis=0)
# y = np.append(y, [y_data[random_index]], axis=0)
# diff -= 1
index += 1
_, loss_, pred = sess.run([
train_step, red_ball_model.loss, red_ball_model.pred_sequence
], feed_dict={
"inputs:0": x,
"tag_indices:0": y,
"sequence_length:0": np.array([m_args["model_args"]["sequence_len"]]*m_args["model_args"]["batch_size"]) \
if name == "ssq" else np.array([m_args["model_args"]["red_sequence_len"]]*m_args["model_args"]["batch_size"])
})
perindex += 1
totalloss += loss_
if index % 100 == 0:
if name not in ["pls", "qxc", "sd"]:
hotfixed = 1
else:
hotfixed = 0
logger.info("w_size: {}, index: {}, loss: {:.4e}, tag: {}, pred: {}".format(
str(m_args["model_args"]["windows_size"]), str(index) + '/' + str(totalindex), loss_, y[0] + hotfixed, pred[0] + hotfixed)
)
# if args.predict_pro == 1:
# pred_key[ball_name[0][0]] = red_ball_model.pred_sequence.name
# if not os.path.exists(syspath):
# os.makedirs(syspath)
# # saver = tf.compat.v1.train.Saver()
# saver.save(sess, "{}{}.{}".format(syspath, red_ball_model_name, extension))
# break
if index % epochindex == 0:
epoch += 1
logger.info("epoch: {}, cost time: {:.4f}, ETA: {:.4f}, per_loss: {:.4e}".format(epoch, time.time() - epoch_start_time, (time.time() - epoch_start_time) * (m_args["model_args"]["red_epochs"] - epoch - 1), totalloss / perindex))
epoch_start_time = time.time()
perindex = 0
totalloss = 0.0
if epoch % save_epoch == 0 and epoch > 0 and time.time() - last_save_time >= save_interval:
pred_key[ball_name[0][0]] = red_ball_model.pred_sequence.name
if not os.path.exists(syspath):
os.makedirs(syspath)
# saver = tf.compat.v1.train.Saver()
saver.save(sess, "{}{}.{}".format(syspath, red_ball_model_name, extension))
last_save_time = time.time()
except tf.errors.OutOfRangeError:
logger.info("训练完成!")
pred_key[ball_name[0][0]] = red_ball_model.pred_sequence.name
if not os.path.exists(syspath):
os.makedirs(syspath)
# saver = tf.compat.v1.train.Saver()
saver.save(sess, "{}{}.{}".format(syspath, red_ball_model_name, extension))
break
def train_blue_ball_model(name, x_data, y_data):
""" 蓝球模型训练
:param name: 玩法
:param x_data: 训练样本
:param y_data: 训练标签
:return:
"""
global last_save_time
m_args = model_args[name]
x_data = x_data - 1
y_data = y_data - 1
data_len = x_data.shape[0]
if name == "ssq":
x_data = x_data.reshape(len(x_data), m_args["model_args"]["windows_size"])
y_data = tf.keras.utils.to_categorical(y_data, num_classes=m_args["model_args"]["blue_n_class"])
logger.info("特征数据维度: {}".format(x_data.shape))
logger.info("标签数据维度: {}".format(y_data.shape))
with tf.compat.v1.Session() as sess:
if name == "ssq":
blue_ball_model = SignalLstmModel(
batch_size=m_args["model_args"]["batch_size"],
n_class=m_args["model_args"]["blue_n_class"],
w_size=m_args["model_args"]["windows_size"],
embedding_size=m_args["model_args"]["blue_embedding_size"],
hidden_size=m_args["model_args"]["blue_hidden_size"],
outputs_size=m_args["model_args"]["blue_n_class"],
layer_size=m_args["model_args"]["blue_layer_size"]
)
else:
blue_ball_model = LstmWithCRFModel(
batch_size=m_args["model_args"]["batch_size"],
n_class=m_args["model_args"]["blue_n_class"],
ball_num=m_args["model_args"]["blue_sequence_len"],
w_size=m_args["model_args"]["windows_size"],
embedding_size=m_args["model_args"]["blue_embedding_size"],
words_size=m_args["model_args"]["blue_n_class"],
hidden_size=m_args["model_args"]["blue_hidden_size"],
layer_size=m_args["model_args"]["blue_layer_size"]
)
train_step = tf.compat.v1.train.AdamOptimizer(
learning_rate=m_args["train_args"]["blue_learning_rate"],
beta1=m_args["train_args"]["blue_beta1"],
beta2=m_args["train_args"]["blue_beta2"],
epsilon=m_args["train_args"]["blue_epsilon"],
use_locking=False,
name='Adam'
).minimize(blue_ball_model.loss)
sess.run(tf.compat.v1.global_variables_initializer())
syspath = model_path + model_args[args.name]["pathname"]['name'] + str(m_args["model_args"]["windows_size"]) + model_args[args.name]["subpath"]['blue']
saver = tf.compat.v1.train.Saver()
if os.path.exists(syspath):
# saver = tf.compat.v1.train.Saver()
saver.restore(sess, "{}blue_ball_model.ckpt".format(syspath))
logger.info("已加载蓝球模型!")
if len(x_data) % m_args["model_args"]["batch_size"] != 0:
diff = m_args["model_args"]["batch_size"] - (len(x_data) % m_args["model_args"]["batch_size"])
while diff > 0:
random_index = np.random.randint(0, data_len)
x_data = np.append(x_data, [x_data[random_index]], axis=0)
y_data = np.append(y_data, [y_data[random_index]], axis=0)
diff -= 1
dataset = tf.compat.v1.data.Dataset.from_tensor_slices((x_data, y_data))
dataset = dataset.shuffle(buffer_size=data_len)
dataset = dataset.batch(m_args["model_args"]["batch_size"])
dataset = dataset.repeat(m_args["model_args"]["blue_epochs"])
iterator = dataset.make_one_shot_iterator()
nextelement = iterator.get_next()
index = 0
epoch = 0
epochindex = math.ceil(data_len / m_args["model_args"]["batch_size"])
totalindex = epochindex * m_args["model_args"]["blue_epochs"]
epoch_start_time = time.time()
perindex = 0
totalloss = 0.0
while True:
try:
tf.compat.v1.get_default_graph().finalize()
x, y = sess.run(nextelement)
# batch_size = len(x)
# diff = m_args["model_args"]["batch_size"] - batch_size
# while diff > 0:
# random_index = np.random.randint(0, data_len)
# x = np.append(x, [x_data[random_index]], axis=0)
# y = np.append(y, [y_data[random_index]], axis=0)
# diff -= 1
index += 1
if name == "ssq":
_, loss_, pred = sess.run([
train_step, blue_ball_model.loss, blue_ball_model.pred_label
], feed_dict={
"inputs:0": x,
"tag_indices:0": y,
})
perindex += 1
totalloss += loss_
if index % 100 == 0:
logger.info("w_size: {}, epoch: {}, loss: {:.4e}, tag: {}, pred: {}".format(
str(m_args["model_args"]["windows_size"]), str(index) + '/' + str(totalindex), loss_, np.argmax(y[0]) + 1, pred[0] + 1)
)
# if args.predict_pro == 1:
# pred_key[ball_name[1][0]] = blue_ball_model.pred_label.name if name == "ssq" else blue_ball_model.pred_sequence.name
# if not os.path.exists(syspath):
# os.mkdir(syspath)
# # saver = tf.compat.v1.train.Saver()
# saver.save(sess, "{}{}.{}".format(syspath, blue_ball_model_name, extension))
# break
else:
_, loss_, pred = sess.run([
train_step, blue_ball_model.loss, blue_ball_model.pred_sequence
], feed_dict={
"inputs:0": x,
"tag_indices:0": y,
"sequence_length:0": np.array([m_args["model_args"]["blue_sequence_len"]] * m_args["model_args"]["batch_size"])
})
perindex += 1
totalloss += loss_
if index % 100 == 0:
logger.info("w_size: {}, epoch: {}, loss: {:.4e}, tag: {}, pred: {}".format(
str(m_args["model_args"]["windows_size"]), str(index) + '/' + str(totalindex), loss_,y[0] + 1, pred[0] + 1)
)
# if args.predict_pro == 1:
# pred_key[ball_name[1][0]] = blue_ball_model.pred_label.name if name == "ssq" else blue_ball_model.pred_sequence.name
# if not os.path.exists(syspath):
# os.mkdir(syspath)
# # saver = tf.compat.v1.train.Saver()
# saver.save(sess, "{}{}.{}".format(syspath, blue_ball_model_name, extension))
# break
if index % epochindex == 0:
epoch += 1
logger.info("epoch: {}, cost time: {:.4f}, ETA: {:.4f}, per_loss: {:.4e}".format(epoch, time.time() - epoch_start_time, (time.time() - epoch_start_time) * (m_args["model_args"]["blue_epochs"] - epoch - 1), totalloss / perindex))
epoch_start_time = time.time()
perindex = 0
totalloss = 0.0
if epoch % save_epoch == 0 and epoch > 0 and time.time() - last_save_time >= save_interval:
pred_key[ball_name[1][0]] = blue_ball_model.pred_label.name if name == "ssq" else blue_ball_model.pred_sequence.name
if not os.path.exists(syspath):
os.mkdir(syspath)
# saver = tf.compat.v1.train.Saver()
saver.save(sess, "{}{}.{}".format(syspath, blue_ball_model_name, extension))
last_save_time = time.time()
except tf.errors.OutOfRangeError:
logger.info("训练完成!")
pred_key[ball_name[1][0]] = blue_ball_model.pred_label.name if name == "ssq" else blue_ball_model.pred_sequence.name
if not os.path.exists(syspath):
os.mkdir(syspath)
# saver = tf.compat.v1.train.Saver()
saver.save(sess, "{}{}.{}".format(syspath, blue_ball_model_name, extension))
break
def action(name):
logger.info("正在创建【{}】数据集...".format(name_path[name]["name"]))
train_data = create_train_data(args.name, model_args[name]["model_args"]["windows_size"])
for i in range(args.epochs):
if model_args[name]["model_args"]["red_epochs"] > 0:
tf.compat.v1.reset_default_graph() # 重置网络图
logger.info("开始训练【{}】红球模型...".format(name_path[name]["name"]))
start_time = time.time()
train_red_ball_model(name, x_data=train_data["red"]["x_data"], y_data=train_data["red"]["y_data"])
logger.info("训练耗时: {:.4f}".format(time.time() - start_time))
if name not in ["pls", "kl8", "qxc", "sd"] and model_args[name]["model_args"]["blue_epochs"] > 0:
tf.compat.v1.reset_default_graph() # 重置网络图
logger.info("开始训练【{}】蓝球模型...".format(name_path[name]["name"]))
start_time = time.time()
train_blue_ball_model(name, x_data=train_data["blue"]["x_data"], y_data=train_data["blue"]["y_data"])
logger.info("训练耗时: {:.4f}".format(time.time() - start_time))
# 保存预测关键结点名
with open("{}/{}".format(model_path + model_args[args.name]["pathname"]['name'] + str(model_args[args.name]["model_args"]["windows_size"]), pred_key_name), "w") as f:
json.dump(pred_key, f)
def run(name, windows_size):
""" 执行训练
:param name: 玩法
:return:
"""
total_start_time = time.time()
if int(windows_size[0]) == 0:
action(name)
else:
for size in windows_size:
model_args[name]["model_args"]["windows_size"] = int(size)
action(name)
filename = datetime.datetime.now().strftime('%Y%m%d')
filepath = "{}{}/".format(predict_path, args.name)
fileadd = "{}{}{}".format(filepath, filename, ".csv")
if args.predict_pro == 0 and int(time.strftime("%H", time.localtime())) >=18 and os.path.exists(fileadd) == False:
logger.info("开始预测【{}】...".format(name_path[name]["name"]))
_tmpRedEpochs = model_args[args.name]["model_args"]["red_epochs"]
_tmpBlueEpochs = model_args[args.name]["model_args"]["blue_epochs"]
_tmpBatchSize = model_args[args.name]["model_args"]["batch_size"]
if model_args[args.name]["model_args"]["red_epochs"] >= 1:
model_args[args.name]["model_args"]["red_epochs"] = 1
args.red_eopchs = 1
if model_args[args.name]["model_args"]["blue_epochs"] >= 1:
model_args[args.name]["model_args"]["blue_epochs"] = 1
args.blue_epochs = 1
model_args[args.name]["model_args"]["batch_size"] = 1
args.batch_size = 1
init()
setMiniargs(args)
for w_size in windows_size:
model_args[name]["model_args"]["windows_size"] = int(w_size)
train_data = create_train_data(args.name, model_args[name]["model_args"]["windows_size"])
if model_args[name]["model_args"]["red_epochs"] > 0:
tf.compat.v1.reset_default_graph() # 重置网络图
logger.info("开始训练【{}】红球模型...".format(name_path[name]["name"]))
start_time = time.time()
train_red_ball_model(name, x_data=train_data["red"]["x_data"], y_data=train_data["red"]["y_data"])
logger.info("训练耗时: {:.4f}".format(time.time() - start_time))
if name not in ["pls", "kl8", "qxc", "sd"] and model_args[name]["model_args"]["blue_epochs"] > 0:
tf.compat.v1.reset_default_graph() # 重置网络图
logger.info("开始训练【{}】蓝球模型...".format(name_path[name]["name"]))
start_time = time.time()
train_blue_ball_model(name, x_data=train_data["blue"]["x_data"], y_data=train_data["blue"]["y_data"])
logger.info("训练耗时: {:.4f}".format(time.time() - start_time))
# 保存预测关键结点名
with open("{}/{}".format(model_path + model_args[args.name]["pathname"]['name'] + str(model_args[args.name]["model_args"]["windows_size"]), pred_key_name), "w") as f:
json.dump(pred_key, f)
predict_tf.compat.v1.reset_default_graph()
red_graph = predict_tf.compat.v1.Graph()
blue_graph = predict_tf.compat.v1.Graph()
pred_key_d = {}
red_sess = predict_tf.compat.v1.Session(graph=red_graph)
blue_sess = predict_tf.compat.v1.Session(graph=blue_graph)
current_number = get_current_number(args.name)
run_predict(int(w_size))
_data, _title = predict_run(args.name)
df = pd.DataFrame(_data, columns=_title)
if not os.path.exists(filepath):
os.makedirs(filepath)
df.to_csv(fileadd, encoding="utf-8",index=False)
model_args[args.name]["model_args"]["red_epochs"] = _tmpRedEpochs
args.red_epochs = _tmpRedEpochs
model_args[args.name]["model_args"]["blue_epochs"] = _tmpBlueEpochs
args.blue_epochs = _tmpBlueEpochs
model_args[args.name]["model_args"]["batch_size"] = _tmpBatchSize
args.batch_size = _tmpBatchSize
if args.download_data == 1 and args.predict_pro == 0 and int(time.strftime("%H", time.localtime())) >=23 and os.path.exists(fileadd):
print("正在创建【{}】数据集...".format(name_path[args.name]["name"]))
get_data_run(name=args.name, cq=args.cq)
epochs = model_args[args.name]["model_args"]["red_epochs"]
if epochs == 0:
epochs = model_args[args.name]["model_args"]["blue_epochs"]
logger.info("总耗时: {:.4f}, 平均效率:{:.4f}".format(time.time() - total_start_time, epochs / ((time.time() - total_start_time) / 3600)))
if __name__ == '__main__':
list_windows_size = args.windows_size.split(",")
if not args.name:
raise Exception("玩法名称不能为空!")
elif not args.windows_size:
raise Exception("窗口大小不能为空!")
else:
if args.download_data == 1 and args.predict_pro == 0 and int(time.strftime("%H", time.localtime())) < 20:
print("正在创建【{}】数据集...".format(name_path[args.name]["name"]))
get_data_run(name=args.name, cq=args.cq)
if int(args.red_epochs) > 0:
model_args[args.name]["model_args"]["red_epochs"] = int(args.red_epochs)
if int(args.blue_epochs) > 0:
model_args[args.name]["model_args"]["blue_epochs"] = int(args.blue_epochs)
if int(args.batch_size) > 0:
model_args[args.name]["model_args"]["batch_size"] = int(args.batch_size)
if args.predict_pro == 1:
list_windows_size = []
path = model_path + model_args[args.name]["pathname"]['name']
dbtype_list = os.listdir(path)
for dbtype in dbtype_list:
try:
list_windows_size.append(int(dbtype))
except:
pass
if len(list_windows_size) == 0:
raise Exception("没有找到训练模型!")
list_windows_size.sort(reverse=True)
logger.info(path)
logger.info("windows_size: {}".format(list_windows_size))
model_args[args.name]["model_args"]["red_epochs"] = 1
model_args[args.name]["model_args"]["blue_epochs"] = 1
model_args[args.name]["model_args"]["batch_size"] = 1
else:
if args.epochs > 1:
model_args[args.name]["model_args"]["red_epochs"] = 1
model_args[args.name]["model_args"]["blue_epochs"] = 1
elif args.epochs <= 0:
raise Exception("训练轮数不能小于1!")
if list_windows_size[0] == "-1":
list_windows_size = []
path = model_path + model_args[args.name]["pathname"]['name']
dbtype_list = os.listdir(path)
for dbtype in dbtype_list:
try:
list_windows_size.append(int(dbtype))
except:
pass
if len(list_windows_size) == 0:
raise Exception("没有找到训练模型!")
list_windows_size.sort(reverse=True)
logger.info(path)
logger.info("windows_size: {}".format(list_windows_size))
run(args.name, list_windows_size)