Skip to content

Latest commit

 

History

History
508 lines (388 loc) · 19.8 KB

db-elliptic_curves.md

File metadata and controls

508 lines (388 loc) · 19.8 KB

Database elliptic_curves

Description Elliptic curves over Q and other number fields
Status production
Contact John Cremona
Code elliptic_curves
Collections curves, nfcurves, padic_db

Notes: In good shape over Q (collection curves). Over quadratic and cubic fields (collection nfcurves) complete as far as curves matching Hilbert modular forms go; awaiting addition of curves over more fields of degrees 4-6 to match Hilbert modular forms.

Todo:

  • Complete the finding and uploading of curves over totally real fields to match the HMF newforms for fields of degrees >3.
  • compute and add p-adic data for curves over Q of conductor > 130000.
  • compute more ranks and generators for ecnf

Collection curves

  • Content: elliptic curves over Q
  • Contributors: John Cremona, Andrew Sutherland, Jeremy Rouse
  • Origin: Cremona database, https://github.com/JohnCremona/ecdata
  • Extent: complete for conductors up to 380,000 (as of February 2016)
Field Description Type of stored data Mathematical type Example of stored data Remarks
_id Mongo id ObjectId - assigned by Mongo; contains creation timestamp
label Cremona label string - '1225a2'  
lmfdb_label LMFDB label string - '1225.a2'  
conductor Conductor int N 1225  
iso Cremona isogeny class code string - '11a'  
lmfdb_iso LMFDB isogeny class code string - '11.a'  
iso_nlabel numerical version of the LMFDB isogeny class label int Z 0  
number Cremona curve number within its class int N 2  
lmfdb_number LMFDB curve number within its class int N 2  
ainvs a-invariants (coefficients of minimal reduced Weierstass model) list of 5 strings representing integers Z^5 ['0', '1', '1', '10617', '75394']  
xainvs a-invariants (coefficients of minimal reduced Weierstass model) string representing list of 5 integers Z^5 '[0, 1, 1, 10617, 75394]'  
jinv j-invariant string representing a rational Q '-4096/11'  
signD sign of Discriminant int Z -1 in {-1,+1}
cm CM code int Z 0 (for no CM), or a negative discriminant in {0, -3, -4, -7, -8, -11, -12, -16, -19, -27, -28, -43, -67, -163}
rank rank int N_0 0 May be missing
torsion torsion order int Z 1  
torsion_structure invariants of torsion subgroup list of at most 2 strings representing ints N^t (0≤t&le2) ['3']  
torsion_generators generators of torsion subgroup list of strings representing points A^2(Q)^t (0≤t&le2) ['(5, 5)']  
x-coordinates_of_integral_points x-coordinates of integral points string representing list of integers Z^k '[5,16]'  
gens generators of infinite order list of strings representing points P^2(Q)^k (k≥0) ['(0:0:1)'] May be missing
heights heights of generators list of floats R^k (k≥0) [0.4754476141654406, 2.4031247402073275]May be missing
regulator regulator float R 1.0 May be missing; approximate if rank>0
tamagawa_product Tamagawa product int N 4  
special_value special value of r'th derivative of L-function (divided by r!) float R 1.490882041449698 approximate
real_period real period float R 0.3727205103624245 approximate
degree degree of modular parametrization int N 1984  
non-surjective_primes primes p for which the mod p Galois representation is not surjective list of ints N^k (k≥0) [5]  
non-maximal_primes primes p for which the mod p Galois representation is not maximal list of ints N^k (k≥0) [5]  
galois_images Sutherland codes for the images of the mod p Galois representations for the non-surjective primes list of strings - ['5B'] Sutherland notation; for CM curves, only primes<100
mod-p_images Sutherland codes for the images of the mod p Galois representations for the non-maximal primes list of strings - ['5B'] Sutherland notation
2adic_label Rouse label of the associated modular curve (None for CM curves) string - 'X225g' based on Rouse, Zureik-Brown classification
2adic_index index in GL(2,Z2) of the 2-adic representation (or 0 for CM curves) int N 1  
2adic_log_level the smallest n such that the image contains the kernel of reduction modulo 2^n (or None for CM curves) int N_0 1  
2adic_gens list of matrices in GL(2,Z/2^nZ) generating the image (None for CM curves) list of lists of 4 ints GL(2,Z)^k (k≥0) [[5,0,0,5],[5,5,0,1],[5,5,0,3]]  
isogeny_matrix matrix of isogeny degrees for class list of lists of ints M_k(N) (k≥0) [[1,5,25],[5,1,5],[25,5,1]]  
isogeny_degrees degrees of cyclic isogenies list of ints N^k (k≥0) [1,5,25]  
class_deg maximal degree of a cyclic isogeny in the class int N 25  
class_size size of the isogeny class int N 3  
sha_an analytic order of Sha float R 9.0 approximate unless rank<2
sha analytic order of sha int N 9 rounded value of sha_an
sha_primes primes dividing sha list of ints N^k (k≥0) [2]  
torsion_primes primes dividing torsion list of ints N^k (k≥0) [2,3]  
local_data reduction data at bad primes list of dicts, one per prime, each with keys 'p' (value:int), 'ord_cond' (value: int), 'ord_disc' (value: int), 'ord_den_j' (value: int), 'red' (value: int), 'cp' (value: int), 'kod' (value: string)   [{'cp': 1, 'kod': '\\( I_{1} \\)', 'ord_cond': 1, 'ord_den_j': 1, 'ord_disc': 1, 'p': 11, 'red': 1}]  
min_quad_twist minimal quadratic twist dict with keys 'label' (value:string) and 'disc' (value: int) N {'disc': 1, 'label': '11a2'}  
aplist Traces of Frobenius list of 25 ints Z^25 [0, 1, -1, ..., 2] a_p for p<100
anlist L-series coefficients list of 20 ints Z^20 [0, 1, -1, ..., 2] a_n for 0<=np<20
iwdata Iwasawa invariants dictionary with keys ints, values lists of ints Z^20 {u'11': [1, 0], u'3': [0, 0], u'2': [0, 1, 0], u'5': [0, 1]} keys are primes, including all bad multiplicative primes and all primes up to some bound
iwp0 Iwasawa prime int N 7 if nonzero, a prime p0 such that lambda=mu=0 for all good p>=p0

Index information on collection curves:

  • {'_id': 1} (created by mongo)
  • {'rank': 1, 'number': 1} (for searching and stats)
  • {'number': 1} (for searching and stats)
  • {'conductor': 1, 'iso_nlabel': 1, 'lmfdb_number': 1} (for sorting)
  • {'non-surjective_primes': 1} (for searching)
  • {'non-maximal_primes': 1} (for searching)
  • {'cm': 1} (for searching)
  • {'conductor': 1} (for searching)
  • {'lmfdb_label': 1,'number': 1} (for searching)
  • {'lmfdb_iso': 1} (for searching)
  • {'sha': 1} (for searching)
  • {'lmfdb_label': 1} (for searching)
  • {'rank': 1} (for searching)
  • {'label': 1} (for searching)
  • {'jinv': 1} (for searching)
  • {'torsion_structure': 1} (for searching)
  • {'iso': 1} (for searching)
  • {'torsion': 1} (for searching)
  • {'label': 1, 'number': 1} (for searching)
  • {'xainvs': 1} (for searching)
  • curves.rand (auxilliary collection used for random objection access)
  • curves.stats (auxilliary collection of statistics)

Collection padic_db

  • Content: p-adic regulators for elliptic curves over Q
  • Contributors: unkown
  • Origin: unknown
  • Extent: primes p with 3,p<100 of good ordinary reduction, for curves of conductor up to 130,000 only (last updated in 2010)
-
Field Description Type of stored data Mathematical type Example of stored data Remarks
_id Mongo id ObjectId assigned by Mongo; contains creation timestamp
lmfdb_iso LMFDB label of isogeny class string - '58.a'  
p prime int N (prime) 97  
prec p-adic precision int N 20  
unit unit factor of regulator string representing integer Z_p (mod p^N) '8471152617139064438417376357679138234'  
val valuation of p-adic regulator int N_0 1  

Collection nfcurves

  • Content: elliptic curves over number fields other than Q

  • Contributors: John Cremona, Alyson Deines, Steve Donelly, Paul Gunnells, Warren Moore, Haluk Sengun, John Voight, Dan Yasaki.

  • Origin: https://github.com/JohnCremona/ecnf-data

  • Extent: contains curves over several totally real fields (of degrees up to 6) and a few imaginary quadratic fields, in each case complete up to some conductor norm bound

  • Updated collection and description 22 July 2016.

  • Explanation of data fields representing elements of the field, including points:

    • Each field of degree d has a distinguished generator w.
    • A rational number is represented as a string.
    • A field element (NFelt) is usually represented as an NFelt-string, being d rational-strings, representing the coordinates with respect to the w-power basis, joined by ","; or in some contexts as a string representing the element as a polynomial in the field generator w.
    • A point (in projective coordinates) is represented as a point-string: 3 NFelt-strings surrounded by "[","]", joined with ",", the whole surrounded again by "[","]".
    • An ideal is represented as an ideal-string [N,a,alpha] where N is the norm, a the smallest positive integer and alpha a second generator expressed as a polynomial in w.
Field Description Type of stored data Mathematical type Example of stored data Remarks
_id Mongo id ObjectId - assigned by Mongo; contains creation timestamp
field_label Base field label string   '2.0.8.1'  
degree Base field degree int N2  
signature Base field signature list of 2 ints N_0^2 [0, 1]  
abs_disc absolute value of discriminant of base field int N 8  
label full label string - '2.0.8.1-[3618,1146,3]-e2'  
short_label short label (excludes field) string - '[3618,1146,3]-e2'  
class_label full label of isogeny class string - '2.0.8.1-[3618,1146,3]-e'  
short_class_label short label of isogeny class (excludes field) string - '2.0.8.1-[3618,1146,3]-e'  
conductor_label condcutor label string - '[3618,1146,3]' or '37.1'  
iso_label isogeny class label string - 'e' base 26 representation of isogeny class index
iso_nlabel isogeny class index int N_0 4  
conductor_ideal data defining the conductor ideal-string - '[13931,13931,-25*w^2+11*w]' representation generators
conductor_norm conductor norm int N 3618  
number index of curve in isogeny class int N 2 starts at 1
isogeny_matrix Isogeny matrix list of list of ints (degrees) M_k(N) (k≥0) [[1, 2], [2, 1]]  
isogeny_degrees degrees of cyclic isogenies list of ints N^k (k≥0) [1,5,25]  
class_deg maximal degree of a cyclic isogeny in the class int N 25  
class_size size of the isogeny class int N 3  
ainvs a-invariants string   '0,0,1;0,0,0;1,1,1;0,2,-2;1,-1,-1' 5 Weierstrass coefficients as NFelt-strings, joined by ";"
jinv j-invariant string   ['288857903821/4771277298', '7556047939133/9542554596'] NFelt-string
analytic_rank analytic rank int N_0 0  
rank rank int N_0 0  
rank_bounds lower and upper rank bounds list of 2 ints N_0^2 [0, 0]  
sha_an analytic order of Sha int N 1 rounded float
ngens number of stored generators int N_0 0  
gens generators of infinite order list of point-strings P^2(K)^r (0≤r≤rank) ['[[0,-1,1],[0,0,0],[1,0,0]]', '[[0,-1,0],[-2,-1,1],[1,0,0]]']  
torsion_order torsion order int N 6  
torsion_structure invariants of torsion subgroup list of at most 2 ints N^t (0≤t&le2) [3, 3]  
torsion_gens torsion generators list of point-strings P^2(K)^t (0≤t&le2)['[[0,0,0],[0,1,-1],[1,0,0]]', '[[1/2,-3/4,0],[-5/8,1/8,1/2],[1,0,0]]']  
q_curve Q-curve flag boolean {True, False} False  
base_change labels of base change source curves list of strings - ['4032.k2', '63.a2']  
cm CM code int Z 0 (for no CM), or a negative discriminant  
local_dataList of local data at bad primes{'p','normp','red','kod',ord_cond','ord_disc','ord_den_j'}^k[{'cp': 1, 'kod': '\\( I_{27} \\)', 'normp': '2', 'ord_cond': 1, 'ord_den_j': 27, 'ord_disc': 27, 'p': '[2,2,-w-10]', 'red': -1}] 'p': ideal_string (prime ideal), 'normp':int (its norm), 'kod': string (Kodaira symbol), 'red': {-1,0,1} (reduction type), ord_cond:int (conductor exponent), ord_disc: int (discriminant exponent), ord_den_:int (j-invariants denominator exponent)
minD minimal discriminant ideal ideal-string Ideal '[1399489,199927,101*w^2-44*w-121] 
heights heights of generators list of floats R^r[0.2815779492939666, 0.25465400108973096]  
reg regulator float R0.01024588468931388  
non_min_pNon-minimal primes list of ideal-strings{ideals}^k[]  
equation Weierstrass equationstring '\\( y^2 + x y + y = x^{3} + a x^{2} + \\left(-30047 a - 303287\\right) x - 9341927 a - 94305014 \\)   
non-surjective_primes primes p for which the mod p Galois representation is not surjective list of ints N^k (k≥0) [5]  
galois_images Sutherland codes for the images of the mod p Galois representations for the non-surjective primes list of strings - ['5B'] Sutherland notation; for CM curves, only primes<100

Index information for collection nfcurves

  • {'_id': 1} (created by mongo)

  • {'field_label': 1}

  • {'degree': 1}

  • {'number': 1}

  • {'label': 1}

  • {'field_label':1, 'conductor_norm':1, 'conductor_label':1, 'iso_nlabel':1,'number':1}

  • nfcurves.rand (auxilliary collection used for random objection access)

  • nfcurves.stats (auxilliary collection of statistics)