This folder contains the inference code using SAT weights and the fine-tuning code for SAT weights.
This code is the framework used by the team to train the model. It has few comments and requires careful study.
pip install -r requirements.txt
First, go to the SAT mirror to download the model weights. For the CogVideoX-2B model, please download as follows:
mkdir CogVideoX-2b-sat
cd CogVideoX-2b-sat
wget https://cloud.tsinghua.edu.cn/f/fdba7608a49c463ba754/?dl=1
mv 'index.html?dl=1' vae.zip
unzip vae.zip
wget https://cloud.tsinghua.edu.cn/f/556a3e1329e74f1bac45/?dl=1
mv 'index.html?dl=1' transformer.zip
unzip transformer.zip
For the CogVideoX-5B model, please download the transformers
file as follows link:
(VAE files are the same as 2B)
Next, you need to format the model files as follows:
.
├── transformer
│ ├── 1000 (or 1)
│ │ └── mp_rank_00_model_states.pt
│ └── latest
└── vae
└── 3d-vae.pt
Due to large size of model weight file, using git lfs
is recommended. Installation of git lfs
can be
found here
Next, clone the T5 model, which is not used for training and fine-tuning, but must be used.
T5 model is available on Modelscope as well.
git clone https://huggingface.co/THUDM/CogVideoX-2b.git
mkdir t5-v1_1-xxl
mv CogVideoX-2b/text_encoder/* CogVideoX-2b/tokenizer/* t5-v1_1-xxl
By following the above approach, you will obtain a safetensor format T5 file. Ensure that there are no errors when loading it into Deepspeed in Finetune.
├── added_tokens.json
├── config.json
├── model-00001-of-00002.safetensors
├── model-00002-of-00002.safetensors
├── model.safetensors.index.json
├── special_tokens_map.json
├── spiece.model
└── tokenizer_config.json
0 directories, 8 files
model:
scale_factor: 1.15258426
disable_first_stage_autocast: true
log_keys:
- txt
denoiser_config:
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
params:
num_idx: 1000
quantize_c_noise: False
weighting_config:
target: sgm.modules.diffusionmodules.denoiser_weighting.EpsWeighting
scaling_config:
target: sgm.modules.diffusionmodules.denoiser_scaling.VideoScaling
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.ZeroSNRDDPMDiscretization
params:
shift_scale: 3.0
network_config:
target: dit_video_concat.DiffusionTransformer
params:
time_embed_dim: 512
elementwise_affine: True
num_frames: 49
time_compressed_rate: 4
latent_width: 90
latent_height: 60
num_layers: 30
patch_size: 2
in_channels: 16
out_channels: 16
hidden_size: 1920
adm_in_channels: 256
num_attention_heads: 30
transformer_args:
checkpoint_activations: True ## using gradient checkpointing
vocab_size: 1
max_sequence_length: 64
layernorm_order: pre
skip_init: false
model_parallel_size: 1
is_decoder: false
modules:
pos_embed_config:
target: dit_video_concat.Basic3DPositionEmbeddingMixin
params:
text_length: 226
height_interpolation: 1.875
width_interpolation: 1.875
patch_embed_config:
target: dit_video_concat.ImagePatchEmbeddingMixin
params:
text_hidden_size: 4096
adaln_layer_config:
target: dit_video_concat.AdaLNMixin
params:
qk_ln: True
final_layer_config:
target: dit_video_concat.FinalLayerMixin
conditioner_config:
target: sgm.modules.GeneralConditioner
params:
emb_models:
- is_trainable: false
input_key: txt
ucg_rate: 0.1
target: sgm.modules.encoders.modules.FrozenT5Embedder
params:
model_dir: "t5-v1_1-xxl" # Absolute path to the CogVideoX-2b/t5-v1_1-xxl weights folder
max_length: 226
first_stage_config:
target: vae_modules.autoencoder.VideoAutoencoderInferenceWrapper
params:
cp_size: 1
ckpt_path: "CogVideoX-2b-sat/vae/3d-vae.pt" # Absolute path to the CogVideoX-2b-sat/vae/3d-vae.pt folder
ignore_keys: [ 'loss' ]
loss_config:
target: torch.nn.Identity
regularizer_config:
target: vae_modules.regularizers.DiagonalGaussianRegularizer
encoder_config:
target: vae_modules.cp_enc_dec.ContextParallelEncoder3D
params:
double_z: true
z_channels: 16
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [ 1, 2, 2, 4 ]
attn_resolutions: [ ]
num_res_blocks: 3
dropout: 0.0
gather_norm: True
decoder_config:
target: vae_modules.cp_enc_dec.ContextParallelDecoder3D
params:
double_z: True
z_channels: 16
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [ 1, 2, 2, 4 ]
attn_resolutions: [ ]
num_res_blocks: 3
dropout: 0.0
gather_norm: False
loss_fn_config:
target: sgm.modules.diffusionmodules.loss.VideoDiffusionLoss
params:
offset_noise_level: 0
sigma_sampler_config:
target: sgm.modules.diffusionmodules.sigma_sampling.DiscreteSampling
params:
uniform_sampling: True
num_idx: 1000
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.ZeroSNRDDPMDiscretization
params:
shift_scale: 3.0
sampler_config:
target: sgm.modules.diffusionmodules.sampling.VPSDEDPMPP2MSampler
params:
num_steps: 50
verbose: True
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.ZeroSNRDDPMDiscretization
params:
shift_scale: 3.0
guider_config:
target: sgm.modules.diffusionmodules.guiders.DynamicCFG
params:
scale: 6
exp: 5
num_steps: 50
args:
latent_channels: 16
mode: inference
load: "{absolute_path/to/your}/transformer" # Absolute path to the CogVideoX-2b-sat/transformer folder
# load: "{your lora folder} such as zRzRzRzRzRzRzR/lora-disney-08-20-13-28" # This is for Full model without lora adapter
batch_size: 1
input_type: txt # You can choose txt for pure text input, or change to cli for command line input
input_file: configs/test.txt # Pure text file, which can be edited
sampling_num_frames: 13 # Must be 13, 11 or 9
sampling_fps: 8
fp16: True # For CogVideoX-2B
# bf16: True # For CogVideoX-5B
output_dir: outputs/
force_inference: True
- Modify
configs/test.txt
if multiple prompts is required, in which each line makes a prompt. - For better prompt formatting, refer to convert_demo.py, for which you should set the OPENAI_API_KEY as your environmental variable.
- Modify
input_type
inconfigs/inference.yaml
if use command line as prompt iuput.
input_type: cli
This allows input from the command line as prompts.
Change output_dir
if you wish to modify the address of the output video
output_dir: outputs/
It is saved by default in the .outputs/
folder.
bash inference.sh
The dataset format should be as follows:
.
├── labels
│ ├── 1.txt
│ ├── 2.txt
│ ├── ...
└── videos
├── 1.mp4
├── 2.mp4
├── ...
Each text file shares the same name as its corresponding video, serving as the label for that video. Videos and labels should be matched one-to-one. Generally, a single video should not be associated with multiple labels.
For style fine-tuning, please prepare at least 50 videos and labels with similar styles to ensure proper fitting.
We support two fine-tuning methods: Lora
and full-parameter fine-tuning. Please note that both methods only fine-tune
the transformer
part and do not modify the VAE
section. T5
is used solely as an Encoder. Please modify
the configs/sft.yaml
(for full-parameter fine-tuning) file as follows:
# checkpoint_activations: True ## Using gradient checkpointing (Both checkpoint_activations in the config file need to be set to True)
model_parallel_size: 1 # Model parallel size
experiment_name: lora-disney # Experiment name (do not modify)
mode: finetune # Mode (do not modify)
load: "{your_CogVideoX-2b-sat_path}/transformer" ## Transformer model path
no_load_rng: True # Whether to load random seed
train_iters: 1000 # Training iterations
eval_iters: 1 # Evaluation iterations
eval_interval: 100 # Evaluation interval
eval_batch_size: 1 # Evaluation batch size
save: ckpts # Model save path
save_interval: 100 # Model save interval
log_interval: 20 # Log output interval
train_data: [ "your train data path" ]
valid_data: [ "your val data path" ] # Training and validation datasets can be the same
split: 1,0,0 # Training, validation, and test set ratio
num_workers: 8 # Number of worker threads for data loader
force_train: True # Allow missing keys when loading checkpoint (T5 and VAE are loaded separately)
only_log_video_latents: True # Avoid memory overhead caused by VAE decode
deepspeed:
bf16:
enabled: False # For CogVideoX-2B set to False and for CogVideoX-5B set to True
fp16:
enabled: True # For CogVideoX-2B set to True and for CogVideoX-5B set to False
If you wish to use Lora fine-tuning, you also need to modify the cogvideox_<model_parameters>_lora
file:
Here, take CogVideoX-2B
as a reference:
model:
scale_factor: 1.15258426
disable_first_stage_autocast: true
not_trainable_prefixes: [ 'all' ] ## Uncomment
log_keys:
- txt'
lora_config: ## Uncomment
target: sat.model.finetune.lora2.LoraMixin
params:
r: 256
Edit finetune_single_gpu.sh
or finetune_multi_gpus.sh
to select the configuration file. Below are two examples:
- If you want to use the
CogVideoX-2B
model and theLora
method, you need to modifyfinetune_single_gpu.sh
orfinetune_multi_gpus.sh
:
run_cmd="torchrun --standalone --nproc_per_node=8 train_video.py --base configs/cogvideox_2b_lora.yaml configs/sft.yaml --seed $RANDOM"
- If you want to use the
CogVideoX-2B
model and thefull-parameter fine-tuning
method, you need to modifyfinetune_single_gpu.sh
orfinetune_multi_gpus.sh
:
run_cmd="torchrun --standalone --nproc_per_node=8 train_video.py --base configs/cogvideox_2b.yaml configs/sft.yaml --seed $RANDOM"
Run the inference code to start fine-tuning.
bash finetune_single_gpu.sh # Single GPU
bash finetune_multi_gpus.sh # Multi GPUs
The fine-tuned model cannot be merged; here is how to modify the inference configuration file inference.sh
:
run_cmd="$environs python sample_video.py --base configs/cogvideox_<model_parameters>_lora.yaml configs/inference.yaml --seed 42"
Then, execute the code:
bash inference.sh
The SAT weight format is different from Huggingface's weight format and needs to be converted. Please run:
python ../tools/convert_weight_sat2hf.py
After completing the training using the above steps, we get a SAT checkpoint with LoRA weights. You can find the file
at {args.save}/1000/1000/mp_rank_00_model_states.pt
.
The script for exporting LoRA weights can be found in the CogVideoX repository at tools/export_sat_lora_weight.py
.
After exporting, you can use load_cogvideox_lora.py
for inference.
Export command:
python tools/export_sat_lora_weight.py --sat_pt_path {args.save}/{experiment_name}-09-09-21-10/1000/mp_rank_00_model_states.pt --lora_save_directory {args.save}/export_hf_lora_weights_1/
This training mainly modified the following model structures. The table below lists the corresponding structure mappings for converting to the HF (Hugging Face) format LoRA structure. As you can see, LoRA adds a low-rank weight to the model's attention structure.
'attention.query_key_value.matrix_A.0': 'attn1.to_q.lora_A.weight',
'attention.query_key_value.matrix_A.1': 'attn1.to_k.lora_A.weight',
'attention.query_key_value.matrix_A.2': 'attn1.to_v.lora_A.weight',
'attention.query_key_value.matrix_B.0': 'attn1.to_q.lora_B.weight',
'attention.query_key_value.matrix_B.1': 'attn1.to_k.lora_B.weight',
'attention.query_key_value.matrix_B.2': 'attn1.to_v.lora_B.weight',
'attention.dense.matrix_A.0': 'attn1.to_out.0.lora_A.weight',
'attention.dense.matrix_B.0': 'attn1.to_out.0.lora_B.weight'
Using export_sat_lora_weight.py, you can convert the SAT checkpoint into the HF LoRA format.