-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluation.py
367 lines (291 loc) · 13.1 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import os
import colorsys
import cv2
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import tqdm
from PIL import Image, ImageDraw, ImageFont
from scipy.io import loadmat
from torch.autograd import Variable
from nets.retinaface import RetinaFace
from nets.retinaface_inference import Retinaface
from utils.anchors import Anchors
from utils.box_utils import (decode, decode_landm, letterbox_image,
non_max_suppression, retinaface_correct_boxes)
from utils.config import cfg_mnet, cfg_re50
def preprocess_input(image):
image -= np.array((104, 117, 123), np.float32)
return image
def intersect(box_a, box_b):
A = np.shape(box_a)[0]
B = np.shape(box_b)[0]
max_xy = np.minimum(np.tile(np.expand_dims(box_a[:, 2:], 1), (1, B, 1)),
np.tile(np.expand_dims(box_b[:, 2:], 0), (A, 1, 1)))
min_xy = np.maximum(np.tile(np.expand_dims(box_a[:, :2], 1), (1, B, 1)),
np.tile(np.expand_dims(box_b[:, :2], 0), (A, 1, 1)))
inter = np.maximum((max_xy - min_xy), np.zeros_like((max_xy - min_xy)))
return inter[:, :, 0] * inter[:, :, 1]
def bbox_overlaps(box_a, box_b):
A = np.shape(box_a)[0]
B = np.shape(box_b)[0]
# 求先验框和实际框的交集
inter = intersect(box_a, box_b)
area_a = np.tile(np.expand_dims(((box_a[:, 2] - box_a[:, 0]) * (box_a[:, 3] - box_a[:, 1])), 1), [1, B]) # [A, B]
area_b = np.tile(np.expand_dims(((box_b[:, 2] - box_b[:, 0]) * (box_b[:, 3] - box_b[:, 1])), 0), [A, 1]) # [A, B]
union = area_a + area_b - inter
out = inter / union
return out
def get_gt_boxes(gt_dir):
gt_mat = loadmat(os.path.join(gt_dir, 'wider_face_val.mat'))
hard_mat = loadmat(os.path.join(gt_dir, 'wider_hard_val.mat'))
medium_mat = loadmat(os.path.join(gt_dir, 'wider_medium_val.mat'))
easy_mat = loadmat(os.path.join(gt_dir, 'wider_easy_val.mat'))
facebox_list = gt_mat['face_bbx_list']
event_list = gt_mat['event_list']
file_list = gt_mat['file_list']
hard_gt_list = hard_mat['gt_list']
medium_gt_list = medium_mat['gt_list']
easy_gt_list = easy_mat['gt_list']
return facebox_list, event_list, file_list, hard_gt_list, medium_gt_list, easy_gt_list
def read_pred_file(filepath):
with open(filepath, 'r') as f:
lines = f.readlines()
img_file = lines[0].rstrip('\n\r')
lines = lines[2:]
boxes = []
for line in lines:
line = line.rstrip('\r\n').split(' ')
if line[0] is '':
continue
boxes.append([float(line[0]), float(line[1]), float(line[2]), float(line[3]), float(line[4])])
boxes = np.array(boxes)
return img_file.split('/')[-1], boxes
def get_preds(pred_dir):
events = os.listdir(pred_dir)
boxes = dict()
pbar = tqdm.tqdm(events)
for event in pbar:
pbar.set_description('Reading Predictions ')
event_dir = os.path.join(pred_dir, event)
event_images = os.listdir(event_dir)
current_event = dict()
for imgtxt in event_images:
imgname, _boxes = read_pred_file(os.path.join(event_dir, imgtxt))
current_event[imgname.rstrip('.jpg')] = _boxes
boxes[event] = current_event
return boxes
def norm_score(pred):
"""norm score
:param pred: {key: [[x1, y1, x2, y2, s]]}
:return:
"""
max_score = 0
min_score = 1
for _, k in pred.items():
for _, v in k.items():
if len(v) == 0:
continue
_min = np.min(v[:, -1])
_max = np.max(v[:, -1])
max_score = max(_max, max_score)
min_score = min(_min, min_score)
diff = max_score - min_score
for _, k in pred.items():
for _, v in k.items():
if len(v) == 0:
continue
v[:, -1] = (v[:, -1] - min_score) / diff
def image_eval(pred, gt, ignore, iou_thresh):
""" single image evaluation
:param pred: Nx5
:param gt: Nx4
:param ignore:
:param iou_thresh:
:return:
"""
_pred = pred.copy()
_gt = gt.copy()
pred_recall = np.zeros(_pred.shape[0])
recall_list = np.zeros(_gt.shape[0])
proposal_list = np.ones(_pred.shape[0])
_pred[:, 2] = _pred[:, 2] + _pred[:, 0]
_pred[:, 3] = _pred[:, 3] + _pred[:, 1]
_gt[:, 2] = _gt[:, 2] + _gt[:, 0]
_gt[:, 3] = _gt[:, 3] + _gt[:, 1]
overlaps = bbox_overlaps(_pred[:, :4], _gt)
for h in range(_pred.shape[0]):
gt_overlap = overlaps[h]
max_overlap, max_idx = gt_overlap.max(), gt_overlap.argmax()
if max_overlap >= iou_thresh:
if ignore[max_idx] == 0:
recall_list[max_idx] = -1
proposal_list[h] = -1
elif recall_list[max_idx] == 0:
recall_list[max_idx] = 1
r_keep_index = np.where(recall_list == 1)[0]
pred_recall[h] = len(r_keep_index)
return pred_recall, proposal_list
def img_pr_info(thresh_num, pred_info, proposal_list, pred_recall):
pr_info = np.zeros((thresh_num, 2)).astype('float')
for t in range(thresh_num):
thresh = 1 - (t + 1) / thresh_num
r_index = np.where(pred_info[:, 4] >= thresh)[0]
if len(r_index) == 0:
pr_info[t, 0] = 0
pr_info[t, 1] = 0
else:
r_index = r_index[-1]
p_index = np.where(proposal_list[:r_index + 1] == 1)[0]
pr_info[t, 0] = len(p_index)
pr_info[t, 1] = pred_recall[r_index]
return pr_info
def dataset_pr_info(thresh_num, pr_curve, count_face):
_pr_curve = np.zeros((thresh_num, 2))
for i in range(thresh_num):
_pr_curve[i, 0] = pr_curve[i, 1] / pr_curve[i, 0]
_pr_curve[i, 1] = pr_curve[i, 1] / count_face
return _pr_curve
def voc_ap(rec, prec):
mrec = np.concatenate(([0.], rec, [1.]))
mpre = np.concatenate(([0.], prec, [0.]))
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
i = np.where(mrec[1:] != mrec[:-1])[0]
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
def evaluation(pred, gt_path, iou_thresh=0.5):
pred = get_preds(pred)
norm_score(pred)
facebox_list, event_list, file_list, hard_gt_list, medium_gt_list, easy_gt_list = get_gt_boxes(gt_path)
event_num = len(event_list)
thresh_num = 1000
settings = ['easy', 'medium', 'hard']
setting_gts = [easy_gt_list, medium_gt_list, hard_gt_list]
aps = []
for setting_id in range(3):
gt_list = setting_gts[setting_id]
count_face = 0
pr_curve = np.zeros((thresh_num, 2)).astype('float')
pbar = tqdm.tqdm(range(event_num))
for i in pbar:
pbar.set_description('Processing {}'.format(settings[setting_id]))
event_name = str(event_list[i][0][0])
img_list = file_list[i][0]
pred_list = pred[event_name]
sub_gt_list = gt_list[i][0]
gt_bbx_list = facebox_list[i][0]
for j in range(len(img_list)):
pred_info = pred_list[str(img_list[j][0][0])]
gt_boxes = gt_bbx_list[j][0].astype('float')
keep_index = sub_gt_list[j][0]
count_face += len(keep_index)
if len(gt_boxes) == 0 or len(pred_info) == 0:
continue
ignore = np.zeros(gt_boxes.shape[0])
if len(keep_index) != 0:
ignore[keep_index - 1] = 1
pred_recall, proposal_list = image_eval(pred_info, gt_boxes, ignore, iou_thresh)
_img_pr_info = img_pr_info(thresh_num, pred_info, proposal_list, pred_recall)
pr_curve += _img_pr_info
pr_curve = dataset_pr_info(thresh_num, pr_curve, count_face)
propose = pr_curve[:, 0]
recall = pr_curve[:, 1]
ap = voc_ap(recall, propose)
aps.append(ap)
print("==================== Results ====================")
print("Easy Val AP: {}".format(aps[0]))
print("Medium Val AP: {}".format(aps[1]))
print("Hard Val AP: {}".format(aps[2]))
print("=================================================")
class mAP_Retinaface(Retinaface):
# ---------------------------------------------------#
# 检测图片
# ---------------------------------------------------#
def detect_image(self, image):
self.confidence = 0.02
image = np.array(image, np.float32)
# ---------------------------------------------------#
# 计算scale,用于将获得的预测框转换成原图的高宽
# ---------------------------------------------------#
scale = [np.shape(image)[1], np.shape(image)[0], np.shape(image)[1], np.shape(image)[0]]
scale_for_landmarks = [np.shape(image)[1], np.shape(image)[0], np.shape(image)[1], np.shape(image)[0],
np.shape(image)[1], np.shape(image)[0], np.shape(image)[1], np.shape(image)[0],
np.shape(image)[1], np.shape(image)[0]]
im_height, im_width, _ = np.shape(image)
# ---------------------------------------------------------#
# letterbox_image可以给图像增加灰条,实现不失真的resize
# ---------------------------------------------------------#
if self.letterbox_image:
image = np.array(letterbox_image(image, [self.input_shape[1], self.input_shape[0]]), np.float32)
else:
self.anchors = Anchors(self.cfg, image_size=(im_height, im_width)).get_anchors()
with torch.no_grad():
# -----------------------------------------------------------#
# 图片预处理,归一化。
# -----------------------------------------------------------#
image = torch.from_numpy(preprocess_input(image).transpose(2, 0, 1)).unsqueeze(0)
if self.cuda:
self.anchors = self.anchors.cuda()
image = image.cuda()
loc, conf, landms = self.net(image)
# -----------------------------------------------------------#
# 将预测结果进行解码
# -----------------------------------------------------------#
boxes = decode(loc.data.squeeze(0), self.anchors, self.cfg['variance'])
boxes = boxes.cpu().numpy()
conf = conf.data.squeeze(0)[:, 1:2].cpu().numpy()
landms = decode_landm(landms.data.squeeze(0), self.anchors, self.cfg['variance'])
landms = landms.cpu().numpy()
boxes_conf_landms = np.concatenate([boxes, conf, landms], -1)
boxes_conf_landms = non_max_suppression(boxes_conf_landms, self.confidence)
if len(boxes_conf_landms) <= 0:
return np.array([])
# ---------------------------------------------------------#
# 如果使用了letterbox_image的话,要把灰条的部分去除掉。
# ---------------------------------------------------------#
if self.letterbox_image:
boxes_conf_landms = retinaface_correct_boxes(boxes_conf_landms,
np.array([self.input_shape[0], self.input_shape[1]]),
np.array([im_height, im_width]))
boxes_conf_landms[:, :4] = boxes_conf_landms[:, :4] * scale
boxes_conf_landms[:, 5:] = boxes_conf_landms[:, 5:] * scale_for_landmarks
return boxes_conf_landms
if __name__ == '__main__':
# ---------------------------------------------------------#
# 评估使用的网络和参数可以直接在retinaface.py里面修改
# ---------------------------------------------------------#
mAP_retinaface = mAP_Retinaface()
save_folder = './widerface_evaluate/widerface_txt/'
gt_dir = "./widerface_evaluate/ground_truth/"
imgs_folder = './data/widerface/val/images/'
sub_folders = os.listdir(imgs_folder)
test_dataset = []
for sub_folder in sub_folders:
image_names = os.listdir(os.path.join(imgs_folder, sub_folder))
for image_name in image_names:
test_dataset.append(os.path.join(sub_folder, image_name))
num_images = len(test_dataset)
for img_name in tqdm.tqdm(test_dataset):
image = cv2.imread(os.path.join(imgs_folder, img_name))
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = mAP_retinaface.detect_image(image)
save_name = save_folder + img_name[:-4] + ".txt"
dirname = os.path.dirname(save_name)
if not os.path.isdir(dirname):
os.makedirs(dirname)
with open(save_name, "w") as fd:
file_name = os.path.basename(save_name)[:-4] + "\n"
bboxs_num = str(len(results)) + "\n"
fd.write(file_name)
fd.write(bboxs_num)
for box in results:
x = int(box[0])
y = int(box[1])
w = int(box[2]) - int(box[0])
h = int(box[3]) - int(box[1])
confidence = str(box[4])
line = str(x) + " " + str(y) + " " + str(w) + " " + str(h) + " " + confidence + " \n"
fd.write(line)
evaluation(save_folder, gt_dir)