-
Notifications
You must be signed in to change notification settings - Fork 1
/
vrnn_ph_train.py
66 lines (59 loc) · 3 KB
/
vrnn_ph_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import os
from keras.layers import Input, Lambda, LSTM, Dense, TimeDistributed, merge, Embedding
from keras.models import Model
from keras.optimizers import Adam
from keras import backend as K
from callbacks import SavePeriodicCheckpoint
from math import pi
from config import parse_args
from utils import audio_amplitudes_gen
from utils import samples_per_epoch
from vrnn_model import build_vrnn
def train(train_dir, lyr_dir, valid_dir=None, lyr_valid_dir=None,
lstm_size=1000, num_steps=40, step_shift=0,
z_dim=100, batch_size=32, fc_dim=400, wav_dim=200,
checkpoint_dir="vrnn_checkpoints", learning_rate=0.001, clip_grad=5.0,
num_epochs=50, save_every=5):
if not os.path.exists(checkpoint_dir):
os.mkdir(checkpoint_dir)
vae = build_vrnn(lstm_size=lstm_size, num_steps=num_steps, z_dim=z_dim,
batch_size=batch_size, fc_dim=fc_dim, wav_dim=wav_dim,
learning_rate=learning_rate, clip_grad=clip_grad,
use_phonemes=True)
filepath = os.path.join(checkpoint_dir, "weights-{epoch:02d}.hdf5")
checkpoint_callback = SavePeriodicCheckpoint(
filepath, monitor='val_loss', verbose=1, n_epochs=save_every)
callbacks_list = [checkpoint_callback]
train_gen = audio_amplitudes_gen(
wavdir=train_dir, lyr_dir=lyr_dir, batch_size=batch_size,
num_steps=num_steps, step_shift=step_shift, wav_dim=wav_dim)
n_train_per_epoch = samples_per_epoch(
wavdir=train_dir, batch_size=batch_size, num_steps=num_steps,
wav_dim=wav_dim)
if valid_dir is not None:
valid_gen = audio_amplitudes_gen(
wavdir=valid_dir, lyr_dir=lyr_valid_dir, num_steps=num_steps,
batch_size=batch_size, wav_dim=wav_dim, step_shift=step_shift)
n_val_per_epoch = samples_per_epoch(
wavdir=valid_dir, batch_size=batch_size,
num_steps=num_steps, wav_dim=wav_dim)
vae.fit_generator(train_gen,
samples_per_epoch=batch_size*n_train_per_epoch,
verbose=2, nb_epoch=num_epochs,
validation_data=valid_gen,
nb_val_samples=batch_size*n_val_per_epoch,
callbacks=callbacks_list)
else:
vae.fit_generator(
train_gen,
samples_per_epoch=batch_size*n_train_per_epoch, verbose=2,
nb_epoch=num_epochs, callbacks=callbacks_list)
if __name__ == "__main__":
args = parse_args(mode="train", use_phonemes=True)
train(train_dir=args.train_dir, lyr_dir=args.lyr_dir,
valid_dir=args.valid_dir, lyr_valid_dir=args.lyr_valid_dir,
z_dim=args.z_dim, lstm_size=args.lstm_size, num_steps=args.num_steps,
checkpoint_dir=args.checkpoint_dir, batch_size=args.batch_size,
fc_dim=args.fc_dim, clip_grad=args.clip_grad, step_shift=args.step_shift,
learning_rate=args.learning_rate, num_epochs=args.num_epochs,
save_every=args.save_every, wav_dim=args.wav_dim)