forked from paarthneekhara/neural-vqa-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvis_lstm_model.py
213 lines (170 loc) · 8.15 KB
/
vis_lstm_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import tensorflow as tf
import math
class Vis_lstm_model:
def init_weight(self, dim_in, dim_out, name=None, stddev=1.0):
return tf.Variable(tf.truncated_normal([dim_in, dim_out], stddev=stddev/math.sqrt(float(dim_in))), name=name)
def init_bias(self, dim_out, name=None):
return tf.Variable(tf.zeros([dim_out]), name=name)
def __init__(self, options):
with tf.device('/cpu:0'):
self.options = options
# +1 for zero padding
self.Wemb = tf.Variable(tf.random_uniform([options['q_vocab_size'] + 1, options['embedding_size']], -1.0, 1.0), name = 'Wemb')
self.Wimg = self.init_weight(options['fc7_feature_length'], options['embedding_size'], name = 'Wimg')
self.bimg = self.init_bias(options['embedding_size'], name = 'bimg')
# TODO: Assumed embedding size and rnn-size to be same
self.lstm_W = []
self.lstm_U = []
self.lstm_b = []
for i in range(options['num_lstm_layers']):
W = self.init_weight(options['rnn_size'], 4 * options['rnn_size'], name = ('rnnw_' + str(i)))
U = self.init_weight(options['rnn_size'], 4 * options['rnn_size'], name = ('rnnu_' + str(i)))
b = self.init_bias(4 * options['rnn_size'], name = ('rnnb_' + str(i)))
self.lstm_W.append(W)
self.lstm_U.append(U)
self.lstm_b.append(b)
self.ans_sm_W = self.init_weight(options['rnn_size'], options['ans_vocab_size'], name = 'ans_sm_W')
self.ans_sm_b = self.init_bias(options['ans_vocab_size'], name = 'ans_sm_b')
def forward_pass_lstm(self, word_embeddings):
x = word_embeddings
output = None
for l in range(self.options['num_lstm_layers']):
h = [None for i in range(self.options['lstm_steps'])]
c = [None for i in range(self.options['lstm_steps'])]
layer_output = []
for lstm_step in range(self.options['lstm_steps']):
if lstm_step == 0:
lstm_preactive = tf.matmul(x[lstm_step], self.lstm_W[l]) + self.lstm_b[l]
else:
lstm_preactive = tf.matmul(h[lstm_step-1], self.lstm_U[l]) + tf.matmul(x[lstm_step], self.lstm_W[l]) + self.lstm_b[l]
i, f, o, new_c = tf.split(lstm_preactive, 4, 1)
i = tf.nn.sigmoid(i)
f = tf.nn.sigmoid(f)
o = tf.nn.sigmoid(o)
new_c = tf.nn.tanh(new_c)
if lstm_step == 0:
c[lstm_step] = i * new_c
else:
c[lstm_step] = f * c[lstm_step-1] + i * new_c
# BUG IN THE LSTM --> Haven't corrected this yet, Will have to retrain the model.
h[lstm_step] = o * tf.nn.tanh(c[lstm_step])
# h[lstm_step] = o * tf.nn.tanh(new_c)
layer_output.append(h[lstm_step])
x = layer_output
output = layer_output
return output
def build_model(self):
fc7_features = tf.placeholder('float32', [None, self.options['fc7_feature_length']], name='fc7')
sentence = tf.placeholder('int32', [None, self.options['lstm_steps'] - 1], name="sentence")
answer = tf.placeholder('float32', [None, self.options['ans_vocab_size']], name="answer")
word_embeddings = []
for i in range(self.options['lstm_steps']-1):
word_emb = tf.nn.embedding_lookup(self.Wemb, sentence[:,i])
word_emb = tf.nn.dropout(word_emb, self.options['word_emb_dropout'], name = "word_emb" + str(i))
word_embeddings.append(word_emb)
image_embedding = tf.matmul(fc7_features, self.Wimg) + self.bimg
image_embedding = tf.nn.tanh(image_embedding)
image_embedding = tf.nn.dropout(image_embedding, self.options['image_dropout'], name = "vis_features")
# Image as the last word in the lstm
word_embeddings.append(image_embedding)
lstm_output = self.forward_pass_lstm(word_embeddings)
lstm_answer = lstm_output[-1]
logits = tf.matmul(lstm_answer, self.ans_sm_W) + self.ans_sm_b
# ce = tf.nn.softmax_cross_entropy_with_logits(logits, answer, name = 'ce')
ce = tf.nn.softmax_cross_entropy_with_logits(labels=answer, logits=logits, name='ce')
answer_probab = tf.nn.softmax(logits, name='answer_probab')
predictions = tf.argmax(answer_probab,1)
correct_predictions = tf.equal(tf.argmax(answer_probab, 1), tf.argmax(answer, 1))
accuracy = tf.reduce_mean(tf.cast(correct_predictions, tf.float32))
loss = tf.reduce_sum(ce, name='loss')
input_tensors = {
'fc7': fc7_features,
'sentence': sentence,
'answer': answer
}
return input_tensors, loss, accuracy, predictions
def build_numbers_model(self, ans_size):
fc7_features = tf.placeholder('float32', [None, self.options['fc7_feature_length']], name='fc7')
sentence = tf.placeholder('int32', [None, self.options['lstm_steps'] - 1], name="sentence")
answer = tf.placeholder('float32', [None, ans_size], name="answer")
word_embeddings = []
for i in range(self.options['lstm_steps']-1):
word_emb = tf.nn.embedding_lookup(self.Wemb, sentence[:,i])
word_emb = tf.nn.dropout(word_emb, self.options['word_emb_dropout'], name = "word_emb" + str(i))
word_embeddings.append(word_emb)
image_embedding = tf.matmul(fc7_features, self.Wimg) + self.bimg
image_embedding = tf.nn.tanh(image_embedding)
image_embedding = tf.nn.dropout(image_embedding, self.options['image_dropout'], name = "vis_features")
# Image as the last word in the lstm
word_embeddings.append(image_embedding)
lstm_output = self.forward_pass_lstm(word_embeddings)
lstm_answer = lstm_output[-1]
input_tensors = {
'fc7': fc7_features,
'sentence': sentence,
'answer': answer
}
return input_tensors, lstm_answer
def build_generator(self):
fc7_features = tf.placeholder('float32',[None, self.options['fc7_feature_length']], name='fc7')
sentence = tf.placeholder('int32',[None, self.options['lstm_steps'] - 1], name="sentence")
word_embeddings = []
for i in range(self.options['lstm_steps']-1):
word_emb = tf.nn.embedding_lookup(self.Wemb, sentence[:,i])
word_embeddings.append(word_emb)
image_embedding = tf.matmul(fc7_features, self.Wimg) + self.bimg
image_embedding = tf.nn.tanh(image_embedding)
word_embeddings.append(image_embedding)
lstm_output = self.forward_pass_lstm(word_embeddings)
lstm_answer = lstm_output[-1]
logits = tf.matmul(lstm_answer, self.ans_sm_W) + self.ans_sm_b
answer_probab = tf.nn.softmax(logits, name='answer_probab')
predictions = tf.argmax(answer_probab,1)
input_tensors = {
'fc7': fc7_features,
'sentence': sentence
}
return input_tensors, predictions, answer_probab
def build_numbers_generator(self):
fc7_features = tf.placeholder('float32',[None, self.options['fc7_feature_length']], name='fc7')
sentence = tf.placeholder('int32',[None, self.options['lstm_steps'] - 1], name="sentence")
word_embeddings = []
for i in range(self.options['lstm_steps']-1):
word_emb = tf.nn.embedding_lookup(self.Wemb, sentence[:,i])
word_embeddings.append(word_emb)
image_embedding = tf.matmul(fc7_features, self.Wimg) + self.bimg
image_embedding = tf.nn.tanh(image_embedding)
word_embeddings.append(image_embedding)
lstm_output = self.forward_pass_lstm(word_embeddings)
lstm_answer = lstm_output[-1]
input_tensors = {
'fc7': fc7_features,
'sentence': sentence
}
return input_tensors, lstm_answer
def build_for_rl(self):
fc7_features = tf.placeholder('float32',[None, self.options['fc7_feature_length']], name='fc7')
sentence = tf.placeholder('int32',[None, self.options['lstm_steps'] - 1], name="sentence")
answer = tf.placeholder('float32', [None, self.options['ans_vocab_size']], name="answer")
word_embeddings = []
for i in range(self.options['lstm_steps']-1):
word_emb = tf.nn.embedding_lookup(self.Wemb, sentence[:,i])
word_embeddings.append(word_emb)
image_embedding = tf.matmul(fc7_features, self.Wimg) + self.bimg
image_embedding = tf.nn.tanh(image_embedding)
word_embeddings.append(image_embedding)
lstm_output = self.forward_pass_lstm(word_embeddings)
lstm_answer = lstm_output[-1]
logits = tf.matmul(lstm_answer, self.ans_sm_W) + self.ans_sm_b
ce = tf.nn.softmax_cross_entropy_with_logits(labels=answer, logits=logits, name='ce')
answer_probab = tf.nn.softmax(logits, name='answer_probab')
predictions = tf.argmax(answer_probab,1)
correct_predictions = tf.equal(tf.argmax(answer_probab, 1), tf.argmax(answer, 1))
accuracy = tf.reduce_mean(tf.cast(correct_predictions, tf.float32))
loss = tf.reduce_sum(ce, name='loss')
input_tensors = {
'fc7': fc7_features,
'sentence': sentence,
'answer': answer
}
return input_tensors, loss, accuracy, lstm_answer, predictions