-
Notifications
You must be signed in to change notification settings - Fork 76
/
BBRSIOptimizedStrategy.py
125 lines (103 loc) · 4.08 KB
/
BBRSIOptimizedStrategy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
# isort: skip_file
# --- Do not remove these libs ---
import numpy as np # noqa
import pandas as pd # noqa
from pandas import DataFrame
from freqtrade.strategy.interface import IStrategy
# --------------------------------
# Add your lib to import here
import talib.abstract as ta
import freqtrade.vendor.qtpylib.indicators as qtpylib
# Based on the Hyperopt results when running against BBRISHyperopt
class BBRSIOptimizedStrategy(IStrategy):
# Strategy interface version - allow new iterations of the strategy interface.
# Check the documentation or the Sample strategy to get the latest version.
INTERFACE_VERSION = 2
# Minimal ROI designed for the strategy.
# This attribute will be overridden if the config file contains "minimal_roi".
minimal_roi = {
"0": 0.186,
"37": 0.074,
"89": 0.033,
"195": 0
}
# Optimal stoploss designed for the strategy.
# This attribute will be overridden if the config file contains "stoploss".
stoploss = -0.295
# Trailing stoploss
trailing_stop = False
# trailing_only_offset_is_reached = False
# trailing_stop_positive = 0.01
# trailing_stop_positive_offset = 0.0 # Disabled / not configured
# Optimal ticker interval for the strategy.
timeframe = '5m'
# Run "populate_indicators()" only for new candle.
process_only_new_candles = False
# These values can be overridden in the "ask_strategy" section in the config.
use_sell_signal = True
sell_profit_only = False
ignore_roi_if_buy_signal = False
# Number of candles the strategy requires before producing valid signals
startup_candle_count: int = 30
# Optional order type mapping.
order_types = {
'buy': 'limit',
'sell': 'limit',
'stoploss': 'market',
'stoploss_on_exchange': False
}
# Optional order time in force.
order_time_in_force = {
'buy': 'gtc',
'sell': 'gtc'
}
plot_config = {
'main_plot': {
'bb_upperband': {'color': 'green'},
'bb_midband': {'color': 'orange'},
'bb_lowerband': {'color': 'red'},
},
'subplots': {
"RSI": {
'rsi': {'color': 'yellow'},
}
}
}
def informative_pairs(self):
"""
Define additional, informative pair/interval combinations to be cached from the exchange.
These pair/interval combinations are non-tradeable, unless they are part
of the whitelist as well.
For more information, please consult the documentation
:return: List of tuples in the format (pair, interval)
Sample: return [("ETH/USDT", "5m"),
("BTC/USDT", "15m"),
]
"""
return []
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# RSI
dataframe['rsi'] = ta.RSI(dataframe)
# Bollinger bands
bollinger_1sd = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=1)
dataframe['bb_midband_1sd'] = bollinger_1sd['mid']
bollinger_3sd = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=3)
dataframe['bb_lowerband_3sd'] = bollinger_3sd['lower']
return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
(
# (dataframe['rsi'] > 38) & # Signal: RSI is greater 38
(dataframe['close'] < dataframe['bb_lowerband_3sd']) # Signal: price is less than lower bb 2sd
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
(
(dataframe['rsi'] > 64) & # Signal: RSI is greater 88
(dataframe['close'] > dataframe['bb_midband_1sd']) # Signal: price is greater than mid bb
),
'sell'] = 1
return dataframe