forked from cvat-ai/cvat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
34 lines (26 loc) · 1.01 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import json
import base64
from PIL import Image
import io
from model_handler import ModelHandler
import yaml
def init_context(context):
context.logger.info("Init context... 0%")
# Read labels
with open("/opt/nuclio/function.yaml", 'rb') as function_file:
functionconfig = yaml.safe_load(function_file)
labels_spec = functionconfig['metadata']['annotations']['spec']
labels = {item['id']: item['name'] for item in json.loads(labels_spec)}
# Read the DL model
model = ModelHandler(labels)
context.user_data.model = model
context.logger.info("Init context...100%")
def handler(context, event):
context.logger.info("Run yolo-v3-tf model")
data = event.body
buf = io.BytesIO(base64.b64decode(data["image"]))
threshold = float(data.get("threshold", 0.5))
image = Image.open(buf)
results = context.user_data.model.infer(image, threshold)
return context.Response(body=json.dumps(results), headers={},
content_type='application/json', status_code=200)