forked from cvat-ai/cvat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model_handler.py
160 lines (136 loc) · 7.42 KB
/
model_handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# Copyright (C) 2020-2021 Intel Corporation
#
# SPDX-License-Identifier: MIT
import os
from math import exp
from model_loader import ModelLoader
class YoloParams:
# ------------------------------------------- Extracting layer parameters ------------------------------------------
# Magic numbers are copied from yolo samples
def __init__(self, param, side):
self.num = 3 if 'num' not in param else int(param['num'])
self.coords = 4 if 'coords' not in param else int(param['coords'])
self.classes = 80 if 'classes' not in param else int(param['classes'])
self.side = side
self.anchors = [10.0, 13.0, 16.0, 30.0, 33.0, 23.0, 30.0, 61.0, 62.0, 45.0, 59.0, 119.0, 116.0, 90.0, 156.0,
198.0,
373.0, 326.0] if 'anchors' not in param else [float(a) for a in param['anchors'].split(',')]
self.isYoloV3 = False
if param.get('mask'):
mask = [int(idx) for idx in param['mask'].split(',')]
self.num = len(mask)
maskedAnchors = []
for idx in mask:
maskedAnchors += [self.anchors[idx * 2], self.anchors[idx * 2 + 1]]
self.anchors = maskedAnchors
self.isYoloV3 = True # Weak way to determine but the only one.
def entry_index(side, coord, classes, location, entry):
side_power_2 = side ** 2
n = location // side_power_2
loc = location % side_power_2
return int(side_power_2 * (n * (coord + classes + 1) + entry) + loc)
def scale_bbox(x, y, h, w, class_id, confidence, h_scale, w_scale):
xmin = int((x - w / 2) * w_scale)
ymin = int((y - h / 2) * h_scale)
xmax = int(xmin + w * w_scale)
ymax = int(ymin + h * h_scale)
return dict(xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, class_id=class_id, confidence=confidence)
def parse_yolo_region(blob, resized_image_shape, original_im_shape, params, threshold):
# ------------------------------------------ Validating output parameters ------------------------------------------
_, _, out_blob_h, out_blob_w = blob.shape
assert out_blob_w == out_blob_h, "Invalid size of output blob. It should be in NCHW layout and height should " \
"be equal to width. Current height = {}, current width = {}" \
"".format(out_blob_h, out_blob_w)
# ------------------------------------------ Extracting layer parameters -------------------------------------------
orig_im_h, orig_im_w = original_im_shape
resized_image_h, resized_image_w = resized_image_shape
objects = list()
predictions = blob.flatten()
side_square = params.side * params.side
# ------------------------------------------- Parsing YOLO Region output -------------------------------------------
for i in range(side_square):
row = i // params.side
col = i % params.side
for n in range(params.num):
obj_index = entry_index(params.side, params.coords, params.classes, n * side_square + i, params.coords)
scale = predictions[obj_index]
if scale < threshold:
continue
box_index = entry_index(params.side, params.coords, params.classes, n * side_square + i, 0)
# Network produces location predictions in absolute coordinates of feature maps.
# Scale it to relative coordinates.
x = (col + predictions[box_index + 0 * side_square]) / params.side
y = (row + predictions[box_index + 1 * side_square]) / params.side
# Value for exp is very big number in some cases so following construction is using here
try:
w_exp = exp(predictions[box_index + 2 * side_square])
h_exp = exp(predictions[box_index + 3 * side_square])
except OverflowError:
continue
# Depends on topology we need to normalize sizes by feature maps (up to YOLOv3) or by input shape (YOLOv3)
w = w_exp * params.anchors[2 * n] / (resized_image_w if params.isYoloV3 else params.side)
h = h_exp * params.anchors[2 * n + 1] / (resized_image_h if params.isYoloV3 else params.side)
for j in range(params.classes):
class_index = entry_index(params.side, params.coords, params.classes, n * side_square + i,
params.coords + 1 + j)
confidence = scale * predictions[class_index]
if confidence < threshold:
continue
objects.append(scale_bbox(x=x, y=y, h=h, w=w, class_id=j, confidence=confidence,
h_scale=orig_im_h, w_scale=orig_im_w))
return objects
def intersection_over_union(box_1, box_2):
width_of_overlap_area = min(box_1['xmax'], box_2['xmax']) - max(box_1['xmin'], box_2['xmin'])
height_of_overlap_area = min(box_1['ymax'], box_2['ymax']) - max(box_1['ymin'], box_2['ymin'])
if width_of_overlap_area < 0 or height_of_overlap_area < 0:
area_of_overlap = 0
else:
area_of_overlap = width_of_overlap_area * height_of_overlap_area
box_1_area = (box_1['ymax'] - box_1['ymin']) * (box_1['xmax'] - box_1['xmin'])
box_2_area = (box_2['ymax'] - box_2['ymin']) * (box_2['xmax'] - box_2['xmin'])
area_of_union = box_1_area + box_2_area - area_of_overlap
if area_of_union == 0:
return 0
return area_of_overlap / area_of_union
class ModelHandler:
def __init__(self, labels):
base_dir = os.path.abspath(os.environ.get("MODEL_PATH",
"/opt/nuclio/open_model_zoo/public/yolo-v3-tf/FP32"))
model_xml = os.path.join(base_dir, "yolo-v3-tf.xml")
model_bin = os.path.join(base_dir, "yolo-v3-tf.bin")
self.model = ModelLoader(model_xml, model_bin)
self.labels = labels
def infer(self, image, threshold):
output_layer = self.model.infer(image)
# Collecting object detection results
objects = []
origin_im_size = (image.height, image.width)
for layer_name, out_blob in output_layer.items():
out_blob = out_blob.reshape(self.model.layers[self.model.layers[layer_name].parents[0]].shape)
layer_params = YoloParams(self.model.layers[layer_name].params, out_blob.shape[2])
objects += parse_yolo_region(out_blob, self.model.input_size(),
origin_im_size, layer_params, threshold)
# Filtering overlapping boxes (non-maximum suppression)
IOU_THRESHOLD = 0.4
objects = sorted(objects, key=lambda obj : obj['confidence'], reverse=True)
for i, obj in enumerate(objects):
if obj['confidence'] == 0:
continue
for j in range(i + 1, len(objects)):
if intersection_over_union(obj, objects[j]) > IOU_THRESHOLD:
objects[j]['confidence'] = 0
results = []
for obj in objects:
if obj['confidence'] >= threshold:
xtl = max(obj['xmin'], 0)
ytl = max(obj['ymin'], 0)
xbr = min(obj['xmax'], image.width)
ybr = min(obj['ymax'], image.height)
obj_class = int(obj['class_id'])
results.append({
"confidence": str(obj['confidence']),
"label": self.labels.get(obj_class, "unknown"),
"points": [xtl, ytl, xbr, ybr],
"type": "rectangle",
})
return results