forked from cvat-ai/cvat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
51 lines (42 loc) · 1.77 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import json
import base64
import io
from PIL import Image
import yaml
from model_loader import ModelLoader
def init_context(context):
context.logger.info("Init context... 0%")
model_path = "/opt/nuclio/faster_rcnn/frozen_inference_graph.pb"
model_handler = ModelLoader(model_path)
context.user_data.model_handler = model_handler
with open("/opt/nuclio/function.yaml", 'rb') as function_file:
functionconfig = yaml.safe_load(function_file)
labels_spec = functionconfig['metadata']['annotations']['spec']
labels = {item['id']: item['name'] for item in json.loads(labels_spec)}
context.user_data.labels = labels
context.logger.info("Init context...100%")
def handler(context, event):
context.logger.info("Run faster_rcnn_inception_v2_coco model")
data = event.body
buf = io.BytesIO(base64.b64decode(data["image"]))
threshold = float(data.get("threshold", 0.5))
image = Image.open(buf)
(boxes, scores, classes, num_detections) = context.user_data.model_handler.infer(image)
results = []
for i in range(int(num_detections[0])):
obj_class = int(classes[0][i])
obj_score = scores[0][i]
obj_label = context.user_data.labels.get(obj_class, "unknown")
if obj_score >= threshold:
xtl = boxes[0][i][1] * image.width
ytl = boxes[0][i][0] * image.height
xbr = boxes[0][i][3] * image.width
ybr = boxes[0][i][2] * image.height
results.append({
"confidence": str(obj_score),
"label": obj_label,
"points": [xtl, ytl, xbr, ybr],
"type": "rectangle",
})
return context.Response(body=json.dumps(results), headers={},
content_type='application/json', status_code=200)