-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path.ipynb
1437 lines (1437 loc) · 965 KB
/
.ipynb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Convolutional Neural Networks\n",
"\n",
"## Project: Write an Algorithm for a Dog Identification App \n",
"\n",
"---\n",
"\n",
"In this notebook, some template code has already been provided for you, and you will need to implement additional functionality to successfully complete this project. You will not need to modify the included code beyond what is requested. Sections that begin with **'(IMPLEMENTATION)'** in the header indicate that the following block of code will require additional functionality which you must provide. Instructions will be provided for each section, and the specifics of the implementation are marked in the code block with a 'TODO' statement. Please be sure to read the instructions carefully! \n",
"\n",
"> **Note**: Once you have completed all of the code implementations, you need to finalize your work by exporting the Jupyter Notebook as an HTML document. Before exporting the notebook to html, all of the code cells need to have been run so that reviewers can see the final implementation and output. You can then export the notebook by using the menu above and navigating to **File -> Download as -> HTML (.html)**. Include the finished document along with this notebook as your submission.\n",
"\n",
"In addition to implementing code, there will be questions that you must answer which relate to the project and your implementation. Each section where you will answer a question is preceded by a **'Question X'** header. Carefully read each question and provide thorough answers in the following text boxes that begin with **'Answer:'**. Your project submission will be evaluated based on your answers to each of the questions and the implementation you provide.\n",
"\n",
">**Note:** Code and Markdown cells can be executed using the **Shift + Enter** keyboard shortcut. Markdown cells can be edited by double-clicking the cell to enter edit mode.\n",
"\n",
"The rubric contains _optional_ \"Stand Out Suggestions\" for enhancing the project beyond the minimum requirements. If you decide to pursue the \"Stand Out Suggestions\", you should include the code in this Jupyter notebook.\n",
"\n",
"\n",
"\n",
"---\n",
"### Why We're Here \n",
"\n",
"In this notebook, you will make the first steps towards developing an algorithm that could be used as part of a mobile or web app. At the end of this project, your code will accept any user-supplied image as input. If a dog is detected in the image, it will provide an estimate of the dog's breed. If a human is detected, it will provide an estimate of the dog breed that is most resembling. The image below displays potential sample output of your finished project (... but we expect that each student's algorithm will behave differently!). \n",
"\n",
"![Sample Dog Output](images/sample_dog_output.png)\n",
"\n",
"In this real-world setting, you will need to piece together a series of models to perform different tasks; for instance, the algorithm that detects humans in an image will be different from the CNN that infers dog breed. There are many points of possible failure, and no perfect algorithm exists. Your imperfect solution will nonetheless create a fun user experience!\n",
"\n",
"### The Road Ahead\n",
"\n",
"We break the notebook into separate steps. Feel free to use the links below to navigate the notebook.\n",
"\n",
"* [Step 0](#step0): Import Datasets\n",
"* [Step 1](#step1): Detect Humans\n",
"* [Step 2](#step2): Detect Dogs\n",
"* [Step 3](#step3): Create a CNN to Classify Dog Breeds (from Scratch)\n",
"* [Step 4](#step4): Create a CNN to Classify Dog Breeds (using Transfer Learning)\n",
"* [Step 5](#step5): Write your Algorithm\n",
"* [Step 6](#step6): Test Your Algorithm\n",
"\n",
"---\n",
"<a id='step0'></a>\n",
"## Step 0: Import Datasets\n",
"\n",
"Make sure that you've downloaded the required human and dog datasets:\n",
"\n",
"**Note: if you are using the Udacity workspace, you *DO NOT* need to re-download these - they can be found in the `/data` folder as noted in the cell below.**\n",
"\n",
"* Download the [dog dataset](https://s3-us-west-1.amazonaws.com/udacity-aind/dog-project/dogImages.zip). Unzip the folder and place it in this project's home directory, at the location `/dog_images`. \n",
"\n",
"* Download the [human dataset](https://s3-us-west-1.amazonaws.com/udacity-aind/dog-project/lfw.zip). Unzip the folder and place it in the home directory, at location `/lfw`. \n",
"\n",
"*Note: If you are using a Windows machine, you are encouraged to use [7zip](http://www.7-zip.org/) to extract the folder.*\n",
"\n",
"In the code cell below, we save the file paths for both the human (LFW) dataset and dog dataset in the numpy arrays `human_files` and `dog_files`."
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"There are 13233 total human images.\n",
"There are 8351 total dog images.\n"
]
}
],
"source": [
"import numpy as np\n",
"from glob import glob\n",
"\n",
"# load filenames for human and dog images\n",
"human_files = np.array(glob(\"/data/lfw/*/*\"))\n",
"dog_files = np.array(glob(\"/data/dog_images/*/*/*\"))\n",
"\n",
"# print number of images in each dataset\n",
"print('There are %d total human images.' % len(human_files))\n",
"print('There are %d total dog images.' % len(dog_files))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id='step1'></a>\n",
"## Step 1: Detect Humans\n",
"\n",
"In this section, we use OpenCV's implementation of [Haar feature-based cascade classifiers](http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html) to detect human faces in images. \n",
"\n",
"OpenCV provides many pre-trained face detectors, stored as XML files on [github](https://github.com/opencv/opencv/tree/master/data/haarcascades). We have downloaded one of these detectors and stored it in the `haarcascades` directory. In the next code cell, we demonstrate how to use this detector to find human faces in a sample image."
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of faces detected: 1\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQsAAAD8CAYAAABgtYFHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsvcuPJMuX5/U5ZuYej3xUVt3H7zfdPQ0txIYFbNCAxAaEQOxmxQjYsEDqFRLL6TWaxfwHaHqBhIQQIKERSIx4CIn9LBFoBs30NNO//r3uvVVZWZnxcDezw+KYmbtHRuaturfuUNOUSZERGeFubm5u9rVzvudhoqp8Lp/L5/K5fF9x/1834HP5XD6XfzrKZ7D4XD6Xz+W9ymew+Fw+l8/lvcpnsPhcPpfP5b3KZ7D4XD6Xz+W9ymew+Fw+l8/lvcpPBhYi8u+IyN8XkX8gIn/0U13nc/lcPpd/MkV+Cj8LEfHA/w38W8AvgL8L/Puq+n999It9Lp/L5/JPpPxUksVfAf6Bqv6Jqg7Afw381Z/oWp/L5/K5/BMo4Seq93eBP5v9/wvgX3nq4Fc3F/p7v/PyJ2rKP6VFAan/ZPsfmX+JSgZVFFAVUsrEmIlJyAqK2GkqIIJqPXspTdb/pP21bx5LnQrlOxGZjlFFVVGWv83buriS1tuzM0QfHzP/a3cyPyLP/hcQLXXU61Pa2S6EL8uiiBC8w4dA8B7nPeKcHdbaPZ3XOu2MAL7st3P3e+6c95Pk5T3q+tDyf/y9X32rql/90PN/KrA4d6eLXhKRPwT+EOB3f37D//hf/if1+zOD1Ablx1KZVKpAlZ87ajZ4rF1O9Ie1Q/2TP9X7PV+nQ1xG9EjOGbIH7RA8mQTdkZgjKSvHUbi9PXD75oFv3qzZDZnkVgwZcu7AOVJUnAfRafLl2bUFcM76JudMztGarwpkRBOarM+8zUhyzsh4ZMzJ7kOs3bXuWl+bhmrnqCpCRFVxya7vFJREBrJk7PlkhIxTQDNkJcsREUFE8eIMLLLV5yXjRCEnNI2gmRAclxsQMn0fePnimlevXvHy5Usur68J2w1JwYWA956UR0gJcVbPo8epFUzPDfPnhfXT53z6v93XxwcKgD/4V//G//Njzv+pwOIXwF+e/f97wC/nB6jqHwN/DPAv/gt/WU8nZjlmUelTQPKhRZ6porVDTv4HwNmq9Z6rw6zW538t9zW/1un/IlKWTAEt51AHF6DLY+u59fO0clq9cnKNc/06ryPnPGuDFQOUTBAhBBtKKm4ChHwejNt9/cRhSVL76+Q7wRn4O9f65/QJ1X7VRV1TMaDQxfHll/L+/Rr+6TOe1/NTAcaPKT8VWPxd4J8XkT8A/hz494D/4KmDRaYVrZZzk6d+99wAf7/y9IOcwGIpUrdJ94Mki+9/8I8Ho4nR4hyirvzvQB2CN0mh9JmS7W+e6nLO4cRB0tl3gjhtkoWIkOdqRZnk59rknENU8SHYc1BFNeOcQ/G40j+5SBuUNtT6FHDfNwEkz+bfc1Lf+dJUoTaeXAFWyDnhxSHicc4RQsB7Azlr5zS26ss5QTU88Wy+b/ydH2Pzc54C6E8RKOAnAgtVjSLyHwP/M+CB/1xV/8/nzpmDRQWFc5LFc/+/f3kPXlceo/wcMD6ofA9YPLeqI9r0V3E2+I2DqKukYMan+Oj8JnWcqfspyWLelvm5pgYlqCrcDLjdrK9UcwMrnYGPuDKRK5eAqTbT5+8rH74wTJLFUgJwzrWXOG39dPqcRUBcmNVVb70uGEsV5VQKfXQHJ/19bvyek7A/lfJTSRao6t8B/s77HX0eTb9vYv4UYNGuJ0uU/8FAUSt7n6POSUyScSIm9mYb/CIOnJLxiOhiUqvKyeCfSQ5NZZm+07lkMbv2XDVSVVJK5DiSkIVkISL03sR5nDwCHVOB0nv3gZ30cfQTaztTe2aq5Rw07Lu5hFXfKxgvpc2p7ufa+fx4fur8/z+qIR9Uqkh8WuaD9WN23tNs/bJRp2CxPPeDrviD2tfuW6fJbjx5tSOA4Kgi+0cjgNuAnj7nnBnHEdGysqbU1JDsBO89OGt3mnMVkhfMvgpoLirl97bkw1WRdtlZv8mMdF38Xj87IJ2XXBdg0dAmT2ohE9CctOCHt5vPYPF0keUEmZenJoCqFkb+/Utb9WYmuXPXONVd59+fU5G+/8G+x7Q4IQPnForldQTNtkp678mA5Mc8yuk9mOg81Vfb7GY8zKlUoDq1qUoXZFMt0jgS40jOmVXweO9RgRACoesMPIAsgswsIM45cIJkg73zquZSslqCS549l9pmLfcxB4eqXjhU0yMJ0TmH975wLqYGq2RUC/FZrunEzdpVO8MZCC6e+ymwPb34nT7r9y3vq4b/VAmtPg2w0FNdeZqUT5FLVe9+ssozk7m+Zx5LDI/Ok3M6/GN98vuA4vsI0TZp3eNBqWRbtYr64cQITsUhHrJzTRUQ8Y0bsetN9ao6xHs0C1nNXJkr6J20pVoIKrg0M6cIKSXG41BAI3M8HjgcDkhWVus1603ParWCMiGyQN8HxDm8LFWUjCI5L75TDKC0UA3GKQjisGNzLMdMYG9WniXnomq/KFVVsvvwRV3y3jegaH2voG6SQqRwKXIyVqbFQgqxXEs1j9fvnuYjnhszz/32PgvpUwvcxyifBljMyqnacUosnft8rszB5rQDq15/ypUsUF+efjjn6j7Xnnacex5QngQuzJdAi7jrmIGFAyoQSF7cYzNdOp2ttkWNUR5N0FpySu1YM4sWriJnUhqbKlLBYr/f8/btW+JxYHtxweXlJf36OE1E77i42OC9J1RCUYTKZWueSwJVHXUgEHOaSUJLyWfRXzoBhLR7nwjUOumr2lAtIdUKUsHDIWSZjT+MCxJ9rIZOUp8/w698fKfotsg9IX2e7Rd4dmz+kPJpgMWMH3hypeexqvLcY5mv1I/Et9yYrmVHqk3L1ha37Px00ufngWj2AD+E0zsZjKpmNoVI1jLJ8KAeFY9KblKDk4BILNKWb1JAzJExFZOqc8WYMZlOVZVUfCVyNm/Qvu8BiDEyDEdijCZRjEeCc3Rdx+Fw4N3bt9zfvyPGiCgcDgf2+z3HcSDGAdcF+r7HOViv12y3W64uNmw2G1arVTFd2mosmss9l3dXza6RmCLkjMec4pxI6Rcwz9bl+Ch2nuIXYhPezMjFZOr7ZjatL+cAcc2CY+pHeSb5aRLy2Un4kUjaean99aFt+Vj8x6cBFpwXw+fl3IR8Diye4xTaYJPHaDyr4cz376cz1t/m5OBzpUogpwCXNVk7JEOxfGhZScVNKkQd4CmlJglUsGqrSzk259z6rZ5nkkMieN+AYxxHYozNGevy8pLxuOeQEvv9nvv7e4ZhwBUAAQOM+90Dx+OeXNUIUdbrNZeXlwwvrri+vuby8pLNZoPzxikYb5AhTZKBC8ZvCOaO7RSEjOicQM04zj+/ymnMOYoqScz7+LnnB4/9f+Zleq5njpHHnp+1zz9GOSdFnLvGx+QvPhGweFqq+DGo+OTA0KfB4jzh1lr5qH2n7TwVDc/Vea7USTu/Xtbi8qyn5lFtHOB8ws/fH4GlTMThUr9fguI4ju2lmpoEEIJndz/y7t077u7u2O/3xDgCEL0d/+7dO3aHPSmNJAohSiaEwMXFBQ+7d7za7bi5ueHi4oKLtXEc69AVSc61SZ7SUNpdn19GtDyBJ7rT1KqigpxIdqdq4+nkOh1m07iY9/lSZW2OX+fKGc7rx4zn03PPje35s/wpAOOTAAvTVd//pr+PNITzashU/3Tcucltx06/z3XG00H2fXoknBcf58fPgWJRfyPZTo/HLASSz7RbTgBDZuShPuJi5iuvqRsjwzAQY8R7+63rOobhwMPDA2/fvuXdu3eMxyPjOBiopGxSxf0DMUPfG1kYoxIjQOR4fMtx2DMejhyPRy4uLnh5fcnl5SWy2dJ1HaFYHpwIx6M5mYkz1TA4igemNAuFPZQZYD/Tx6d99D7Fxt/cLG2A0XgNeeq5uiINLtswnffDAOPcWJ7PmdPPP3axPS2fBFgokPI0UCDPAMNZAJPJ30UvNVVibtqbOuXxCl/1+Ca257Gdc+pc6ZwzPluXoKSq4M0d2c2Gpau1Fh5ETgemguqhHZ1n11OKl6MYMFRert2LZCPXUwDncJJQPaJptPgGF8jRJqVmX1biSPSePAI5IqOQU8L5jt55Yswk8hRAlnJTbVKGcYh4F+g2Hb030T2NRw67Hb/+9W+5fXvH/jhwOBwZDkcDl/3A8TgyjuCdkMIaLx2OhCNCyqSDsE8e3UcO7x7o+iNvb/bcXA/cvExcXV2wXfV0vccDa78ia7T+FSWPI6NG4x1Wk5WmeoVmIIj1afH4RlRxGToXCIy4GgxXgt7auHFCwghXVYeoUaNOBM1LQLBJaCD29Hql7Tk6cY8WmGfLM1xHXQDPWkFKwNs50EwfiT/5NMBCq8gKKmYBqCXnbDZvTh4w4P3UeVMHLpnjifSaofGsbrvm1Jb6XdLHEaZaoyOrPquTlNJ05/lKV34b8+SKPYO35XVLOxYrgSSrI2WSKFmc9UNKxHFAvWdMwhAz4xgZhoHj8UhKgZwtDsTuu/ZznmsjSDaCM0bjOoaYcQ76VUfnjCOJMXI4HHj9+jW3t7e8ffuW4/7QOA0jQOs9Q4xKPgw4Z3xHjKktsscjHJzxHc4L+8OGu9u3fPd6y8XFhheXF1xebdmsel5cbQmdxwvG3cziTJ6KX2n9Xj/P7tukMVtts05SYcwJSak4niuqgiuOb8ZtzSW9NAFEOn/9qR2TZemc1PxkOfESnZc6R07rUdU27k7PFRGelms/rHwSYAGQorH5ZTgsfjsFi3ZOOh0os3MWXMOJvsckpjfJ4eSZ55zP+A8u9VM34w18JcJKCLfmKf4i5hGYVpgsVb+eVK0mcbiZqMnR3pOpKOqsBRaolYlRGSPE0cCiEpJGdIIjoOrKRMlN1clxaPc4jonj8djAZrNZo10geatnt7/n/v6e29tbdvcPHHZ7hmFovEaMCYkF+BTMqppQZwO763wBVQUyOcHxGA1YxpE37o4QYL1Z8fL6ipcvX3B9dUEcrrm+umC97s3PQjzO1UjXicCs6kEdO8UVDJyZP9VZ2xJaHExdW5zGnJAYUTxZEhSrU8JZ9KwD77v2jB+Nhhn5+RwYfAhv8dyxp3Uv1MmTdpzjZn5s+STAIufE8fgAnEHqXDD/hB8w85a2B3x67rLT3Ml35/VYETM56uz3eaenspyICJKrS45AVluV64p9Ml58ub6WHzxQtC4ydbWfqVgATnBFzcqSiuRSrAZSLAXZ+u5wGLh/u+P+7oH9/sjx6BmOIA5ycgxRGYbI/nBgGAbuH+4MWBIMw2Amz+NIGiPrjZkWU0rEaA5YVWJ5d/u2+VnEaEAzjkAqPgkCIdgEm1sT7GX9UC0kIsJhvyfnRBwz+3jkcH/kt7/+FnHw6mbN1eWGm5trvvziJa9evWS9Xlud1eVdPDmPpo5KxrtMIpI1W995EO/Aq4GaF47jyP1+R7jriJrpVj0aOvAO53xZiQXRqmI+TYyeG3d1bCbi2Ymqqs1E+1w5d+6zE7/kTKn8kyuOcN77jwYYnwRYGBNeRCZ/ojLkJbKeQ9NWx/ewxU89gInZnqkmZ+pIMrbz5lKFFOvKKVhM13OLk+aShPiy0pX7WuZYsHDwHJXQ/ABSa2OvHt8lcj7wcFD63Ug3ZMCx3+8Y44HjIbE7jOx2B97d3/Pw8MBufz/dZxZikRKGYWC73VoCmDQ20TarDfx6TM5AnojHVNwdVB9HD0/PzTXLhvfmELXd+Bb16UikNBLHIzFm3r07cNiZhyhZ6bqOruvYbDakfLQFQFPpEwpxm0AV1Tg5aKFEzayCEIIj9N7q6j2h7wjBkYOg4nDVeU61qRxVYhSkGVnqPTUOYfas6z0nnVTP0/E3VyfO9dUPKTEux3J1Z6/j5mPQFp8EWDgnbLd9u9GnJrecdmjLYvT0OfW75fcTn3FqNTkXTd7Uh5kWMonWINVpSs8TTE5qYphJMjKwyA0s4iwXRXupJyfQLtP7mnchE2NkzImHuwOH48hxjAzHyOE4cjiM3N3t+c1vvmO3H9nvRh72Aw8PD9y9e+Bw3DGOoxGFrsR0qJQkNhYTIZLMr6EMOMWRRot+NeIQEHNmEhFIEKvVIGXibMCPowHstNpN0sVmtcVLwHtHcB0hBDofyDqSxgMxwm635/Xr1/hgvfriRaJfWT9YmIk344NYdKuooOoRCz5BNRGzsA4GDpvtiourC65vXnB9fUm36olFSqljSzRBTjigm88QnZy2VI3Pmf14OmhmE3/JHbUzzqgVp0DyFHicgkvMZZHRJWjEKhmdreXDyicDFpdXm5Nvl0TlvNQOcvp08+edXkVk+1ziKOAROD1V2vUegUVtaVEXVG2S6fIhN6dqMUtP5SzAXKxNsjCJQEpjRQSJlpSFrIxAEEfKiTFlHh4O/Oo33/Lu/sD9w8Dr2x3fvX7L3f2B33x75Fe//IbdfuR4jByGyH5/5OHhgYyRmV4cOQRC6Ns9ei8cj0ecm3gYLcluhqHEhKhr/VCT8mSnpiBl8xad33tS8GIkY0qZKBMZnEaKxODpvBCCEHxH5z3ZK+gIqtzf7xpI7vd7fud3foY4LTEe4J1HXAbx5g1qDvF4STZps127+nxstisuL7dcX1/Tr1dk50kqk6qbI+SEF8W7aUGq/TSZutezMWYKZHuuLe3H+SC908/zY09/PyX253W29uhSomsyrRYjwV8UyWLRyXnuO/BEVGLpmMhkLjp9KM8x5vW7ZdDU0kFpYXqtaoiODbnhhO6sbHTKExlbLSPzgUZqlpbMfFIV/wiZ1BCnAVFlHBIh9DjnOBwmf4df/Opb9ofE/qjc3w+8vn3Hw8Oe33535JvvXjMOyjCMHEctYODRqLgKbsVTk2SkYXQDOZpo3/WeEEJbPQ+HA5qFzhcpSWdu6VIT3kBGiwmyWnfMwkXhAqw/CvE7puLbIaxWHVvXI70n+IDvHN5lVBO73QO3tzuqGfzm5so8QJv5Ulrfu2Ben1kHmyTO+Iys2YLoxPqhqjUhBKJ6xE8TUdQXySLjXTo7fqbx4hZjpI6fUaaxOX8/reNcmfvJPGVNmb+blNUt6s05oymjMZ1dcH9I+STAIsbIt9+9Buokn6bh/P8F8qprk7J1zhnQOFdOGeY5eTpH4VMAqeg9j9WcTKXJhmyqnpRxVodNrKi5cQ6ZGbABMWvRqmaE6hiL6jH1xW63Y7fbcfv2HW8fjuTcMSbHw/3Am9t7drsDr+9G3t6+A0yNyYhFnOYlw54zkEbLCB4j1cIbAuTco72g3TRgg6tkmVu4lc/vxfrKHplrg3zS7a1PKL4MiqjgcagKUTMhKqKRbu1KSkHjK5QjwxC5vb3l7vbCyDtZAQ4VqydrxiWl+kpNk8z8HVQzMQ7FXX1HCD3dEFHfmeN4WwQsAM1pBnc4qWsai957aL4+J5Y69xgk5mCilWg5MybtWqdgMpHz83cA55QQlmDRXsmsYO7p6fDe5ZMAi8PhyN//e/+o2eVbYBOQdVrlU1oCQUoTWMw/Lzt56f5sxFRYnDeXZlKJvCQvgcckms2iTtPdy7nVTyRbCPg8x8RQRGC7TmqTS7U4ZGXhOFQQsWAwI6iMW4iF0HBSgsQ0m4UiOlR6hhHu70fevr3nfjdw+zDy7t2uOKN1liM7m44tQiMVfemPnEwaoI1faQCXTZJnHMwiI+JPANr6A7SZT9UV1a/pbdKuQ+3TLHRSCNG6amYDDFFhTEoo4fehNwsNkjmOke++fVOiRkFk3RykVJOZSKGAg/l4iDiyGon78G7Ht7xmOEbe3r6jX69R16POI86XADItDlwZ38UFB9AmPL6NFeeqtDWNlexOJ//jCOVTns1C8lO7Vq0TSu6SmZfvqcTRolSKpFUtgN4Jwf8FsoZ8880b/tZ/9t9RSSNVIVVzaaodVsyaepJk9rRIfvTbJHXY4E4zFtMm9pzlnnEcp5yV9rh6joCTuupq8TTMONW2YFQJxQVpx0Fz9iypND0pKfuD+UbMI1v7NSVqsysMvqkiWSDGzP6YGSKmiuwi+6OSYuYwRIYRhETOqd2vpeYvVgsFkWT3gUck4DpHjAMxgR4GhuOIYipKCI6+7wluSvZbV7OEreZpJmF47xAfANuCIKdMFiVrRtXyRSRN5JRJmkg4kkYSnuRNqhhyMpOoF1adb0B1d3dHSomHhwdevnzBi+tL+t43s7OixU3c2covinc9x13i7s1veXj3J9zf79gfjgwxkfzG+A6pkpNtP+ABxMSthZWqSBhVuvCuW4w3ESGdhIzMz23RtieT3jmHD6lZMuYgslqtZiH+7tHLy9JsGkKgD4Gu687Pkx9QPgmwiDHz228eyJmy0tv3qvasze+B5oE300RaWVo8Hud3MBLI6slZZ+cUm/cZbqSZQuuKkEY7Vsy12AfovMN5Q36nQpKIr7xG9aA0zwryLKZB6x8x3wmtrH6a1JbDMRuB520ajDmR80jSTFbhOMIY4TjCcRRiUnIOaI7Fy9SRcyJrTfCSyMkIx9q/ZIilw12w9og4XHAEN/VfKjrKJPFlfAn77qSYeKFJTeItZ8QYzQOzbQugDpNCPGVBNn8ZcpGAbKIJAddJIY8zMWPciGoLWqvu4MELQS5YrwNg1gyHVLNNmUjFXSsq+/3A29t77u4HDkc45kNJuOMLL2Ju9l6gGLJmYv+MX0tGzlfSfEFOnslhMp/8p+N2ssYdHkkNIhafM0/WM4+idc7hdCl11AQ/ITzOTv5DyycBFpqF4WhiVhxdE29NrJ3S4KcZqQY8MnNOnXLGzZbUQCKlyQFWZscvygxQ6oPReDDJw4GGYhFpiG5XceKMjZ/Rz3XjnIqCzQ05g0oip3pfk89FzoovC+MQS3avXMBNHOMQOY5qDlejMIzZJmZKOBdI1TKRBYTi2TlJTROuTn0WixctIaPq7ZolxwQqS5VNBQkO75xZLxrHaKnpJHi8C8SiHuaciYVINavPjBQU5TSPZRYKGHkDuVzVARhzMgmURHBC13vWXWC7vUDzWIhN8C0/qUOzs+C77MjJkZKQzOhhfiK4tpgUYcSe8zAfX/Y0KyaYv2Adj7l9r0rjTU6pM5Hz3019kdt3y+seZsfaq1mlRB7HJLVjZAFOP6Z8EmCRFcbBGPacvE2aAhQpTpaRpBl0huAz9J5Q3QbHImWaTKu16ctLHRPKhJdlfc3yoTVDFdQgJTvHJAofXBnsRdUQ09+rZJJPMnC3Cjw26RxF7ATEkaMlbhkieA9BHTFlI0/LIMgijCmTkhrYVB9PJ+Q0NJXN2mkrUM7R1JBcBno2stb7ulJ5QFu0qfWmNBJvYWFiyjKFCUXWnxS1xPS0MxLeNBEsstXcuJOY2bnuO7IknRMpjjPeICPZfDj2+z273Y7h6hK4KOdmXDRAnxQThULypqTEMRNHSBEU2+6xcjtV4nKZ5iwoUuJFxLfn1/KXFom3fm9S7FMk+xmfhyrYiix8ceqEz+V5TeBwSnQuVenpe8q4PJ9b40PLJwEWqsqYhqIi2HfVElnGtKF9EwhKevqZWN+kkao6FKcamYUU14fnYmp1NygS69Layd6BeCnirInIqWybEbxNYucohFQ00tAtfTHmapIycRgyu05OigtC0mSxCNls9DmWVwaXq3ksgPOkZJvlxNogSWg6kMt9hcEbaVkGrakiQoe0oC8TBSqjaXkZxqB4MZVJUbyaLqzOE7xnzCPN+uEyySWyS1zgbJI7tfR5mLlUNaIu0TJWFdB2mux6HjPVCnTOkztHioCH6AKhC4UzsSTFmjKIkNcd4iJZlWM+cBwf2I93OH+NIsRoGcerE1vOiW2xnFkSHY+4FQSbYZIt0lUonA6zcdRWCEO5avA2otwAOvuJPK9jUPMSEiaVYhrj89LIUU4GTSlOHTku86bOpeeYRk7Lgpw/rfAHlE8CLKq4ZGV5Q87ZwAPzhKxxG2binFYskfKQZ3XOX3MgKQvohNCOFsZexcBGGM1EAlfAoO/Ms6/vHF0nBG8IblaGWc6LsrJq2QBokrTrEmTBSognqenjWieGJnwBzxhzCZlOuK5YI/I0OHPOpKzEmpG6qjNllcxCI4WNv6Ck17N+D8HhfUe3EdadedJ6cQQTykr/KkMMDCkyjoOpGzmTU4JQPDOlBMkJ5AIgwUFyM4LQWYNkYYA+MffpXOo7SfSrxZpVLEspaQmGGxmH1PrVQmiKumMhZbbKeocLHt8ZCZhyJrWU/nWFL6IF5nNx6uOQc/GQmcX61JFbjBHk2R4q7Vet0hiL+pb3ObkK1Ot6xBIXy6SSL87NSheWmyEt667lMaB8SPlkwKLvzNXap3kU5qROKJPuldT04qqi2ISRxknMLRqVgGqIr9o21TJfgLCM9Czii3cFALQcKDZBxcF65emCEAL0AVNDiGUFLW7DMz00pSlIzNqnhUsQtIq2GA+gzhVnILNApGj+iJqV5I23ULW0+zk7csqMydx9c0lyO8RMzNqEzyatMRdPTf3pQmC1WtF1HX7rubq8pPehuGVPoraIcDjs2R8PPOzNZVxF6HCGQCUNHlI5GVfUNHB+7jxndZppc6mbz8EiRSUG8Ewgp4IF8GWTNFOCAdjvBh7ujzzcD6zWHbbtYF39Ban9h4HwZPo1a5Hz/dQGqTxH6R9ZRp3mwsnknBsALwYyxX+E5QZHpqYYnNT+rFxF48y0a6pXMzrPpAdbIA0oJg28jtvalqnuOhc+VvkkwCKEwM9+/somj1bRuKyIOTeSM1WyDZvULk3oOffNSM0Xf0ZOzolRneUFOLFQNK6jEHCVqKymV+ccm5Xp2d6ZRUTEAr2Q6kthJOVkV9/aijLTViufkEre+ywH8yORQvT6iIs9yVkei5jsPasQk3AcEw+7kXFMxDGV8PTSn5oNKGoWc3GlT8reHYDzynYdeHFzyatXN1xfXnF1dcXFxQWd93hxJaeFgVxKiX3xHn1z95a7uzuOYw11Lw5oladwDt93dP2aN2/viUOihdsXSc4744IWwXe57teqHI92fOhKEJQrWx1mrJbTAAAgAElEQVT4bGREduS055iUuzSSx3t69y1ff/UFNy8vcaE8bx2BTJTEmDOHeOCQ9ox5RDz43kOepACTQUz5tc3Ya+Ki0s7yqiboNilnfMJ8XM0lplOJYbn6G3hJWKrMlQ13IiU+ZuZ82BIucUL2Twhxytv/mPJJgEXXBb786quZblU6eZbwRFUZ4+RDISL4U7BgKXqpLCNK27ElItAm0lOpQXIjtyaAUhPPO4u2rCuDEyMFVZdOXlXKqIFkS1a6DgoTx7t+z2GIRaweURlwKTAQzcOyiMfifHEJtzYlxbYUdKZ1A2QZIbtWt914BShltfZs1x1X11u+eHXDV199wdX1JS8urum7zjJpl6Av2zbRgG+73rBZr+m7jpUPPOx2xBh5ODwYoVqsHRIgiNAFR9cHi/YMgRRqmn5zmAqINblsmqRZ0JRJqgxRLLxcvInhZa8Uy3BuUaJoIOfIMSk5Hbl7u2e7PlgOjI0niJlBxSWSK1nMq2Tlyz0i+BBam6atFhUktwVpMa7a++PJOPnQzD07K8FdUhwsFBd7r6peoYpn/jxVsnCzcVjiazztt5iXJOZSrfs44sUnAhYdv/u7v9smZpqZp2pRaOTcBBaTeDt3OZ7UmAoIS5v1fH+MuvHt4lpV8lhIFalYLLR5xBlPUR2c7LuagEZ1JkKezVU0rTwZR79+MGZ/fyA/PCBjZMxVYjIVS7wUS0a2Fdx3eG9qRtWXDTiLeuPkJIAo0wfPV1/c8OLmkpsXF7x8dc0XNy+4vNqyCtu2y5sXU0Vyzmi0iRZcb5YSzWgyU+YwDGSNHIahkNSZHBMaOwtYQ/AidE7IvTe1KmZTK5iyibX8poXd1xgbuJofhTPyte41qEbyqli2Lz0mbm/vCZ35vVy/WHF5GQhdQohGQooQ+sB6u2FUR+iTmVDTFHFqHrlTVvUwt6KVsXkuY1cjE6uKoxMQwAQuQAn5Z/FdEzrLw5w/T1EtfJlbcGiL8RXnY1Xb+Vn1x/KarXwSYOFDx8svv2x6WUt/xhIcqvmzebzN0DTNEHSevAZAvFuAhcwiPKfVvgQE+QkcYFI/VBXnDdFrVOZ8C7tKBMaYm4j4yNdjgYB2XdNvHeI6nO/J6jgeR3ADY4zEpFBACpGSNTsX+s32G62Je00Hz7g8ibzT9ntmXN2u13z5xSu++PKKVzdXXL/YcnV1wWa9wmXfwu2D9yYR5UwcC+nrAzln1us1XdexWq0swKzkldgPCuNoMTDZcm+a+7v1U+c8zls4fs6xEdRTwJ02VYqUGVMqnFPAOwM/A0mPTwL0ePXkmEh55O27e0JwdJ3Dh0tWq605zDlzPBPn6VZrLl/09OtMipCyb3k26zM1Ja6QjXUszsy5pyv2xIHM1dAaGyRnj50+s6i77SU7C3OAAhTI7FoziVpHfKiLT+XwyoIrM0D6keWTAAvnHP3qAjiZUEURPJdjAlg6PlU0nRFRQNtlaj5puxlPMV/1MzWhSW4DBwyImiv3rDR2H1pqja6bD4jqEnwa2eoaAZpzRvCs1omH3cAYM8chMg4K3tF3a8vUpyXQTA38SBb8lfLY/CWEXKwEFlzknBC8cQ+rdcfFdsXVxZbf/72veXF9wfaiZ73pWAdHcNaOEByuxKY4J0gOhFBWODzqnG3z55R+FXi437M/7ozD8cI9OygZv4+HnUneWUlxYBzNhIs4QufNF0IVS4EnzTElqhGYxCkuI4krGayEusVhnVS+Czj1xMMDD4c963ee1Qr6leK8peUzK5J5pm7Cms2mQ9Wj2YH2s3FWHVDM5Fod5ioQnMvmfu6V8vDouDouVR8DTE2H6JBH12kpFc6cV4FDZrzc/LWs6935ifSe5ZMAC2OejXWei1lQeemnPNAmPqN8WIpz2Pp66jpbPi2rUtfWevCoUyjmVFf1z5kk0/iVatYNdjUj1aSs7hXExsKM+Qbz0iQbOz7jOY6Zu/s97x4OjGOk6y/sOsVMiQOXjHPJ2TJLpTTahNRiCoWW2KbrPZebLdv1mottz9X1BV99ccPv/+7PWa8D3mlxVbfYlhBsfxDBvDJrzENl/y1BjJu4Gudw3nP1cFV6TlmNwzSZs816hyVdTiWQLARnPiNti8JqQaoBc2Vt12kDpFhGgXpPlOIVWgnvbJ5mWSAm5WF/oH+XTQVxG66ko3e2C1kIPV3YEPwGJz3gSdFNC03xJs1FHUk5PJIoTsfAOW7A6XE5vGaTt0qe5wDDfFGm46oEDCXIcQEY0+d4Ekh5nq/4iwAW4tBuu7ix6fPTrqpzb7dTEseFpW43f3cnD8qpO/Hlr1JJbv8rNEADE1If+9ybq7dAARsrMWWcs9XaomilHe+8I8bIN28f+PPfvObX39xyPB7Np78r8KUecQHvIOuIiGcc9+g4EKDtCJbGSFQLJru+vODF9Zavv3zFF69e8OrmkuurLavecXPdY4nRM6Hz9H1vKeu6S+rGOc45XAiE0FEdwGLMJBXGsS9Jga8Zx5FV33P79i3v7u94e3fHbrfjGC3K83CMsBK8etbDSI3/SSkzioX1u7ZJsdSexkycMI4RTZEoI7Ecl3spGb7KM8RW5KiO3RAZUuQ47NntH9gfr0jphi9/1iMayLlD6XDSE/zGVJyyaXR1yxeX2rCLOplVH42/tNzYuY4xU7mecpJ6srqiIk+pDRbnza41BxAwiSPOFs5TlWc670+evvh7lE8CLIyIMaPUdGPn9PzT8+aTdTlx3RxktB5R7eA0122LcG1cZhGLpbrklC/NB2ROFtZw7PbQdNIZZbqktaU4zGQVy5Qw00ezwjBmvv3ultu394xREdeRVdjvhonMLVGIqRnvLNDNe0/nnenWJLzaHqlfvbzhi1fX/PzrL3j16pIX11uuLlZ4p6z76gNhINGVlH2bbtXMzDUQzJfdwnLfM4zGiXgRYln5us5z8/Il3apjs12zWq142O04Ho8cxoE3t28NHDpfwqyVw3Ek5yMp5eIYaY5WVepzoriq62NCokgmVz8G7Y2LESznhBRXbN8hGlFNjBEOR+WwtwhcVY/5f4tFMnsjSJ0EcjY/l0wxTRYD6jkHqYXFrvjhzCdkkzbIj84RaFLaaWk8nM5/m0jwRGq5Uxa+GUwWuXrsOX7kY5RPAiwAajZDmZkXba15usydYvzpKq8ztK9AUOc1M0/BAiELziNB9qYqqGRE5jmeGvVFdb01NVzKwGGRTQvA+d4eeCoOVq4EZRU2an8cefP2Hbv9ES1ivqqyP4wNKEKw5DOqZuD3EqxdakAhqvhCaK27nq9fveSrr2/46ssbrq/XXG47NuuAI7FedQTn227i1Y+lE0fwwbgbCTgfCD4gzjWyORfLQcg2kaL3pEuh6825q+97tvt7DocDx8NombqOI8NgSXRxdh9RJqVv9kQLiPkS3FWIZZ2AvhxFVvMypez5mikh86XCmBOHY+JhHznsjTSX4qnqfV88dg0wLDgPnGrZAsA8cVUEKbHmMpuclHHiS9DgfOjV9irBxsLJxKbyYnrq+wOImcBVpw2668B1QnMVraA6gZAnacmjsliqtI2lj1E+CbCoEw6W4HDGhX5Rlig/MRuilIcoU5AJlGS00qzdk+ZRB4RREFkskAtnZqmqjtTckVosfM1Ls7XBKqjPRopFpW4NmCmDO1mzLJ3+kbt3Dzw87NkPIxonXmSMZad0TPdXXwaJTn4Q5sgUIZtj2Hrdc3X1kp99/SVffHnNi+sNF2vHykPA0sz1QSzfga85OB0xZwMLV0K5xdh3NwPcII4c6i5q1efFs9Ie52tYtLDZrNgfbVf1wzgieLzcsT8MlpK/U7xsOMSheLfWl7SH4LxQo3CdVitU8f3IkJP5GbjSB5FEUPNt8WVQxZjY70bu3j4wjtd03dpA0BWza5YSIuOaybayZArF7f7MRKskZh09BRRsslKCyOoYrbTWJDFXn4myVpxWjalj0ykT7zaLlp6rIfX46hN08v6xZIsfBRYi8qcYa5KAqKr/soi8Av4b4J8F/hT4a6r65tl6mDr71LHqVDc7uf5T7VrqkHlZVxMVhSLuzqSA6l4ukJmceJZlikBVBXXSvBhda+c8QlOLB6Vg/gG28o0p8e5hz+3tLQ+7shKPh+YUlbRHVZAM0TxNLFVdViNkXUDTQIrmzxBWKy62W7766iu+/PILXt5ccrENBB/xbsR5CM7RByP7vK9Wj0AAfHJT6vtZ3I0WHwjvfcmuFVr/uuQYSidZ0hZhvV6zOpgLeYoQfI/3HW/v7tnvD0UdgTcHGzrNNF7B1zmkmFtPwUKYCFdxznxKNJOjKY7eAcGC0zUnjofIw/2Rw+FA161YrwRXeArvO9BgZveSns9I6qKK1Oss1IglD+CRaXIuR+FsfC4lkmrFqepkHZPnQslbv2S3GNPz66Vn5e/n99r9kPIxJIt/Q1W/nf3/R8D/pqp/U0T+qPz/17+vEj/b4m9eND+Ni7Iwgc7FVNqGPuoypz5ReUGaurJ6Fsa5yh1qOSksT0B1wrEH5U/IJI3a1KBpgExi5lgGhyORk6kWa5/Z392S9jt2774lj/ekeE8cRsayZG3WG1Q9KXdkF0ihQ7wv/gYZ1dFYewHphNXlmldff8nPf/YFX7x6xXod6ILQhRV9gH5l2wGKExTPmMzd3JfMTDmEKXW8a0tiuw9xAt6xCp6Mmu+CetYIgyRUhN4FoodAR+82dFqkk3HAa2YfPPuDbVq0DT27uEedmtrnMQuHaFnbzVxa9wuVkibAFT+ZmHOJkcmknAnOUxQMA9s4oIMlu3l3j+W9WAeCC8SmJmRCWBHjQE4ZdWqJgnNCJdP5ZdZ5W/iLU3hORaV9vHBpUJ5a059SC8x3dDlYXVtzMkhj8mjmfYpkE1YlwG3Jn4jwaUgWT5S/Cvzr5fN/AfzvvAdYPFWekh6AxzLc/DwA8vmekom4mowWFTCm3Jp2/crOT5vKNJHzPSQbAFIultPHFpq7uzt2Dw/EwXwTHOA618Krx5SQzrNedXT9ipwSw3EgjUfb8jFDCMLFdsvNi2tubl5wc3NNVwjFrvP0ndB5JTjLt+F9TRFnkkXwXXH6WWZgqvxRELG9QIyJtqDOmhRDy/4ZabLnVymk6zqurjpiLlYNHH1/ZLU2S8m74YhqZkzTpkDeeyR4hmEo21baY/GYaiLiLYOXN9Wzxgs186JmhmREoXMBL6bL397e0ndrNutLum5N0LpHR8b3q0fPsnr+Pvdsz57D93MEz43p02wXc2VjWW/xZKX4Ep255sckN+HHg4UC/4vYjPpbqvrHwM9U9VcAqvorEfn63Iki8ofAHwK8vLnCnwvy5/tueC4h1OMKv/BMdiD1NUuGBX/VHcWmxk31VOAQmR6cam6DG51yUrZ26PLlxfarGIdEPJqzToyZd2/e8ebbN3z3zWse3j2UhMTmfRdzJHuHeMfF5TWr9QbnHMfDgZwTcRgJIvRrz8vrF/z85z/n66+/5quvvuLrL3/GxdbyZa7WHV2A4AwsVBMh+GJd8Q0cnARC0+cLP+BKhm0RQkpELUldUs2r4MgOXlysmaQvcxYbhsGS23Q91zevePHihm+/e8PbQuTGmEgivFlvuH33lv3xYPENzoja3nlTA0sqAuOJzOfF+YALHhfsXdXiaXb3O8sQNkSyy2w6z6rfMEblz375DcchgQS6fsuql9bfLo8Gfk6Rso2hkkBTCwhcjB8oqscS/GfsGM8lnHkOLNx8J6sFa+cadmmVduep/Gbq0ccGiVp+LFj8a6r6ywII/6uI/L33PbEAyx8D/P7v/ewH3d2y02vHnnkQsgSiifuoEsYTv5ddrWZtfvL9qVVFREjVm3QWwKZq+48+PDzwcL8jZ/OXECzqdMwjMSc6FxaRszFG0jjiRVltV1ysem5eXvPFqxte3lxzdbll1Qe63vgFy8tRImgdULwz6/8tY7XkSaJY0vvTfSXrD1dWXSkMsYRV83xNKTHI0Hii9WZD6NegnpikpbA7Hgcutxcc90aE7vd7cixOR8UBy0nxf8la0vthwWrOmVu6U/rOfFBEhB274uyGhe6TOIjSB3ARHvZHbt/dc/WwZ726LKBAC0IUse0KnbMs48Vx9oxZtI6eGYfwSIR9mp5/bi7LIrBx/jkv2qFtgVtWdg4oHkm6P7D8KLBQ1V+W99+KyN8G/grwGxH5S0Wq+EvAb9+nrqew9lk1RGylfKJt5ZjHqsjcmatKBovfTz6cA4L55+eAwkymY9vxvRJrx6NtOLzfHYgx03frRkTFmMHZihoV0oy3iTFyOOzonbLdbrm+2PLi6pKXN1dcX12wWfe2w1cXCM6S9HgU54v64RTvZhKFmzJNF6+vdi/z1PM5WQ5TAxkBJzPQCZZQCLcYmN57QrcmeCVt4ars1J6SqXQ319cMhwP39/d0zhOJbUc3U4OKxaCK2Vkn87cmtCSmCcFiVrzvikt4huiI6Ug+RDQI240jJmG3P/LwsOfqamS9tlD8+aTPlXNUFttQnE6408/PjtMPKScc3SS8TGSolWSJhsp/FVaeAoaP0b4fDBYicgE4VX1XPv/bwH8K/A/Afwj8zfL+379PfU/h3vM3+T3GVTn/+2kkppXJAeb0uhMghcUx8+POOebUz947vHfFTFh9KA68fnPL/jigOFabLSkljuNgKgiK61a2/2dJ555TQpPZXZ0Tri+3XF9f8fLmBS9fXPHi8pL1xZZ+ZdsBOmfh/15M7fLemcPTSRr5yUpk2b7mwTjze3Il65QlxpkkFJ1nflLb9tD1PV23IpfNfUJJsnNxccEYs/lSjIn9xSX3F/cch0MxEydLFiG5mRgtWMrcxmmWJl8S4di91fotOtWh48BhnxkPe8jCRXF0G46Jh92ew/HIqt8gneVHNHOwtr1UUpEoGpCcjgkmCWGpgtCO/xhlnqtishiadDZvhLjzi9XHLD9GsvgZ8LdLgwLwX6nq/yQifxf4b0XkPwL+MfDvfl9FCk+YKOuvz5ST85Yd9sS5ek5lOc0H4Gah55MD0TmgEJGZL//yN4DQe3wXYMxkMimO3O92vH7zlv1hICP4rmOMkcMwNqKw7zrWmws2m43p5WWl71eBlXdcXV6YW/fVBdfX11xebVmvbbMREcU7KUl6vKm4MmVQqm2cqx110EsD0CmlXCgqgUkgBTCKlSLmKYajSiPOO4IEjiWS0ovQB89qtWK7LuHtuyPr9ZqLzYbj0eJgYhxKkFhq/Ro1mnXi5BnPg6RCCPR9j3cdvfMkHxjHgUEPxKSMCUKCISYOxVEsXiSCdMUNv2x1oArMYi+Kv85TYvzHnpCn4Q16suCprTaLNp2Cybl2PSWBf0j5wWChqn8C/Etnvv8O+Dc/uMIz+yyU+p47iUfSxUIlOPM7RWR7IpR1bhvPbukl6hZ1nz/vrNThLGtzzEaY3d7v+NN//Atev71jfxxZb7eMKXKII/txICXoe8/aWxj4vL7gAO/YbtdcX17w6uaaL17ecLFZs+47ghNcsM2C8F2z9tRcHKDNv2K+QXRtq3Ou5WRwgkkQysLSYQnMy5qrDi9SWHwhFSuDy86cyNrqaxLNqus5ro7E5HDeomJXfc+q6xmGAY2jkYozXkWka8BR+9iSE2dS8qiuTYILgRwzo5rk1fcruLyCZBsqQ6BfWzrG/WFgGCJdlwjBEYszXHVCsw1/XNn0SheAOnvqZ8fQubKUVJ8b0yfjdUa+1+k+nS7NRaAR8ifj0Kxq590SPrR8Eh6cQNlF/HF53nQKCySeB5a1T/X32W9pecSiSp0S50xLWZEs5CTKlcdm1KWNu0G+mbeC57A/8N3r1/z22294e3dP6FfgAsM4mOgrDvHZ2P4iHg/DQE6J8Xgk50zXdVxsNrx8+ZIvX73ixc0V24s1fR/KKgmheFO6oo5I8VgVCWhxRJsMOJYPk5LlPqm2XjNuYLkbV7u3bG7RWVIhGjJebO8USqIWFaEvF8q9cS598MRQMnIV6c07V9QcbINj51r8RwOJOiEwslhT8YxNiexsk+c4WPrd4Mxxo+tXaA4McUeXTKiMarzQcRhYrTr6PiyklWnovO8EPz+OTv9/H9Pq4zWstEfds+dV/mL+Aswd8CMJP58IWEhLPXdanu+gUzPTLBpv0UGTXwXUzWeWv9cEwVonirp2jrH+riU0Mae9CQhEytaKULJw20ZA9bfDOJCPGbTjze0d//Af/im/+OVviSnT+UBMyjAmnPesLramQngPWTns9oS+tzD1ZHEdLy9e8Jd/50v+uT/4Z7i82LBd9XROShZoR3COEDrLoenM+9EX1UGrf4G6peuzGp9SYyCEMnDVgph8DSNX80Zt/gA66fNS0wu6koy2iPAZZ4mNBbxs6Z2wXffk4YgPysXlipfXV3z75oLvvvuOdw/3hN78NPDT/iBjidOITO7UlUBGbNeuGDOHw5E0jjiUvg8E7yD1jINw/zDSdfd4Z16c/SpwcbEhdCVdn05baAbxqC5X5aWU8eTQLFs3TueUrpqNp/Mlxad4uFne2LnJ9uQaZ9vykVSlTwQslHORePB+nVB5BZFKDz9OUrKss070ChL1vEJSWn5+qp3k1FGmtqtKFfPP5x5M5zwxC4chsd/tuL+/57jbg+tIYya7REomDvc+NP3yeDgiImyds+zboqyDsF73XG629H2g9zOiMpQJVgi/OlmdmDnQO9vMdzKR2o5fTdetUgFmfWigoYq6KXtTywhSwHDuNWjF9jPVkmPC+AxLuOwFVl0AWbFe92yHTeM7Hg4WiBaOtg2h9b3HuYQ4hysSTqzZ0p3iZ/kfUsk3YgAFw3AkxoGuD3QipJgZhmjbBpQkx1XNACMJbUBMKfffRxo4O8ZmSYDnwAbgngELd0rKn5Uo6v8n/MYZH4uPaan5RMBCHjtGlXKaDGde2kNutbSzlr4ST1bglseUiM66YXGFCij275OmzB9CjVWo5BPlpVA8M4XD7oF3t3fs7vekUfEB4phxLpJjIrsaPVu2MKzbYJQ6gw+sVoHNamVmydl+liEEXPm/tV7mAVgWhl1NnXM1ybqx2AuZiE7zp6DsRD6Z7ur9VV5BNVL3MIUpbBuXi8VCyanGzphr+QpKuy2exBWJyDnw4kiUFIFz57oawVf7hFmSZBX2+4OlACx6ZEqJcUyMeeSis82TRIRxs25AMRwjYzRHuRDCYhSllGwdmfuanHn2T5X5AjJ/f6oO1aW3ht1jKo/m8fww61DNefK0Wm3l+8Iyv798ImDxNCg891Cq8CAIVH23FN8G2RmnKybrixQzXP1BBZyUtPMtGKiCysxqcObhnNre6yvFSPA9d7fveP36NcfdHhHoQ4fDyEcdlTiOttmvsw17ui5AccryYrkjtusNl5eXrNdmVq0b4HrvW2q1ulcKM7XC2lQlsJkZLpcJLmJkjjytG0+SxJnnInmhcNvmPo4sFkuTa9o3C9lCUfpVx2rdM6Y1x+ORruvaPQnOnqkUsPO+TTiZEXbNH0TNijSOoz2vwj2lZG1LjejLHA6H9joejwzD0HJcOh9K3ywlig/1XZCTsXLu2CVgV/GDxf/TVVMDBpFZ7jjJZ4HkpyifDFg8NUCfUydql02isYHG4/rmDypPcQ7l/0U7il9AFbW1Zb2x78+1ef6+MGnNmXXvub+/5+72rWXCEqHve3CeLgT2UPYnBQkB3wc2G3PxlpKcJoRgpsaLC66ursxU6CcHK04HHssBOXeysnaCzqI7RZ52FbbfMzoTfZsKVnffKoAxXdOsJDYRl1mvVZW+79lsNqDCOI4tEbD3Hu+ETCoRqB0hxAKEDikp5Go9tmmyZfwajrZjWlWfEhb/YxKIEbaHw8B+f+R4PJasXSUlnQ9IeV56xtfkcd88t5A9L0HU/p++s5c0KXd5fTk5vwnOIk0y/lBV6UPLpwEWCjpzbV3qXsuOXoj+c8tD4R2kSBIqpw9bGz8xZdFSU39a0JiUp+ZKngMhl53IIE3bKDJNSrP1a8lZkXGhbkJcE+c6NrIm0LN7d+D+fsfhMLLabAh9h4q3fUFxjJHCW6zoQocLWwMaRjqBjXdcX/S8vNpwebHBdw6/6ixa040EbwRj1p7s6316m+DiCN6I2M7ZFoW5gl+xSKgcJtVOZFrJnLSdyXwBF+tKOz/GsmeJYCzmbDulDuNJRDJRLQ4nqYFOD0jX0W2UeFhz33dc9oF9EJKDrI7QBxJKzL3Fcjgh+N4iVSlZ1F1PCB2hM+sIO7O6GIhmYiobIIvFCw8pMGjHIfccRle4qUzWA0pCvG07kcXhNSykg+nlF5Pz0XYPfto9Xk98cNqYLePW+JcCrnnVyOY6xqSqQm1I24InRWW1Z4epvXXuiAEjRSP+GF5inwZY8DQqnqLyXLyb/7awY5eIvPnAzxhbDzQSD/PpRSQseYvS8VlqRqLqlDWJhiYOMyMLSz6CM+RVHMx9+2Fv6ebMo7OzPUaYEsGaF2LXMk65GuhW4kY2mw3b9Yb1em0E5qwvJo9MKaRgEauZtU9Mwulc11bptvFOBQehcRpm1ix9VbxGjXWQIoVM0bh1gIqEpZhcncHaM5pWwbmKUT1VqyqSNeGLNOUE/GCTPxaASyk1c7sryYAqh+MKd2T9Wp6BmvenK1m/qoXlWMzRaLbsXS6WRMUVMM+PO4u3ORPIqFN/SRlryjTRmzTWFjcKaVTaOztuXuZ9dzrzl0AyL2Xh1Lkx9YeXTwIsYkq8efNmgd5gHZTKhkC1zDtxntSj6tKLIhOizxWIZh61/+xQpSVfseMLV1EnvzrLoDXTP+cDvrZh2qtSGsuvw47Qd/z2m++4Pxz59i7B3Q/qqs/lB5aHeWb+e/jTXy9//xt//a9ZQJrlIkfF0gmS4nLiVs4Gx2IT7PZzMeHPJWUm/soAYiZRzDglBDSP9SSqVWyuNtZyGlSdnyBRK5gjZ9Hkg8qnARbjyK9/85v2/zxeoZa53l07vlj6MIQAACAASURBVEY/1t/P6YYwOVOdfi8izfqwLOZMNN8HtZrj5iupqhLKythUj5Tb6lbDtdPwgJPAmBN+liH8c/l0SkoKvWVfT0lLciHb9e4RWYlj4WszKza2EvPkR+fMmU8VVyUv0w3nJ1GXsflbrW90y2tNn7NFC3+E8kmAxTCO/Pmf/znAI8li/t288+01/33JODdwkSU4AM39tYnn5Zy5FGJb400gUY+fg0U17YUQ6Ly3JDBZm8SjqmY61NH2voiZ0C/B4vJqA+LZbtd0ISzGx8Z7tus1X716wcvra15eb7m5vuLF9QUXmxWvXl7R94UQDNKu63xX7ssci+o+InX7u8cidV3ZqlnVF15mWiFF3OP0hOUeYzw2EXohdZGRsvVhzFOUZNTImCL7nakCu4OFqD88PPCbb7/h17/5hj/79S9JWZFgVp4xK2Mxv/rQk3NuOTNSSX9XU/Y5FyxUfrCMXHE0h7YxmcS/Wnm2F2s2m55/9GevATiOSt/bbmmqingFD16lEI+WO3OuduaTCbt8P+/tWxeWeT/O68jTwZwt587RupObkRM2N6YAyQYaP7J8EmARY+Tbb1+fFaGeUkFgUkOmAT/lzJzHEZyWpLmRlNUC0PaoLPUxC92u39UUbiEEyNpUpK7rCM4xjmPR5wWNqQEJkhjHyHEYTvRcC4P2zgbeMAzFYmHS1boPkDucatl82dMFTx8C637FuuttUyApE7uqRJXDwMLJjcd4HDRWjz39TmZp7GSeY937FmuianuM5rLzuRaROhdBHrBdvucktGCqYbR9MKyfpfVTv1mz3W7ZbC1/p46j7WOaM0mnybVarRjHsfENFRwna482c3IbO+JxzjZdTppLcNnkFXn79o5x3Nh4EGxbAe/oZwuL5QCd5wN52mS5zEsx3X8+E9awlEBMX3Ju2vz6tB57X0oQoe8X9dWpbf3yFyg2JOfMw2EPLDtuDhZN9Zgh+3Ok6CnoLEoZ8cu9I029aQOs+Co08IAFWNiKGm1X9RBwmFtycN62FhxHQjDzZ1LL4zAMsXAhy7bW9o7jUFh8oQ8d0lm8xKoPbFYdm1VvyXALAdp1JWKy+iNIwDtfErnU4K56IbXYCgnN/cp079O21Ezbbno1s95kqs5ZiWpek5JNZK7Zxw2KJ3FcJJvrtEDC4SURRRA/kZuqZq1ar9fNhBpTIuZcNso2C0oFFlWzjGix1Jw+9xY+P1sEcIJmtY2ScqKL04T+9tvX7NYr6ycB3/UgHp+nLRRPJYJleL/gZJIafHBnz4FpU6j5+Kxj0MvQgOjcWBe3nAPTPY6PxvopsPzY8kmABZyaS3ncSbOOPwWS+l0tp74ZcwISmMJ+dXnMog06iYWt0/2SS5nzKCnZLuu9C+wOD6Qxslmt2a43DHngsB/Mo/BEf6yh1cMwMI6mrvTFMakLnnXXcXFhIegX2y0XmxV9mCZYSgm8s2Q3ZTMj7/zkwapSfB9cYeZzkzwmyqdS/vWkzMLm5vykvuTlM7HPBg72uT4n+36ejUzVnLG0uFQ7ZxagcRwNNNTR94GLi4sSbSqkHIlF/Yk5lXgRh+jECwkly1dW64czk9FJsH4qkzJFJa2mZ/ndt2+566eEPqYyOaoSek51OwWD5evU1HoecE5/c3J8EiyamunO1DufyvMNu59SZ35A+STAohl2ZmDQyjM32+bDbJJPJrp5FScdJ1Jya4INZG36eIs4LRMniDzS9s4Cm3Mlx4NJBc53XKw3bLsVve/Y746ktw+cxglJ8GQxFURzxjlTa/q+Z90H+lVgu+7Zrles1ytL8BICOkvW6rCVf5nG56TNjXB3i8FmJ9R3LScbUEgxkUoL3FLrl4IjHme+C7FIgrXfVMtWAvP4GSlANZsgiz7UluS3782M6o5FrcvmoxELeXy6gIgYUV2J5erl4Zkmmrpya8WfQUXmW9dy97Cj208LUBZQcScbFD9trn806d3yQT8HFvXdJOd4Us/jFIin9agmOrd6si1/oTgL6gr5oac5ad55jVgCc6aa51+YbdwjIugsgs/OX0oskC33ozuRXsrnVCdXNskjx1j4AeX+uONyteFnX3/FzfULvPf84rtfE48Dw+FIOsG+NIxEFxnHI6vefCnWq46u8wSvXF6sePXymqvrLZvVihD+X/LeJNaWZFnT+szdo1nNbk6TefNm3VvviXqIRohpTZEQQoWQ3qiQGAFCqgnMqRnTmiIhIdUAQU1oxAQGzJAQE5pBPSEVAyQQqOrWuzfzZp485+y9mohwd2Ng7hGx1t7nZPPylY4unkqtfVYTK1aEu7nZb7/95mZXFG/1FOKdCdcWN1jzsqupVNxiEauRutqvd7ySP5YqmUft2GUutlbwT8z1d97jQyCOaQY4AduNc+nMNU1Qla7KdfPealdSniyMc6a14dUTt1uSZm5v95yGM/lUANIUmcZoJfqn0yVzNRsW0a7iduccfd8TNaP5xHGMRgbLlTAXSdMSyx8PA22w+N6MiwcRklhNSZ0f81xYebbz48pKO+Kz2ZA1znHtLVfMpaZM11SCy89dnoeqzlXB18eeOTA/w/gkjIVFtz/+B4mWwt2Csi8LXy8urrHAL1fp0gKgqCbndarKU2tNKgHLGH7lJiyRygz0hcYmahon2t0Ndze33N/eGcYhjiDGp5yusCYR24Vr7O7cGreBUNSlGm86lxazL+I14nwpiV9CBVfi+GXCWHWpkdGKi3q1cy07W+056lcFZyU1fDX5q1KVeIOLq5KWU5jbrmUtehdF3xITrolTXqjWpJlEFRy0jWfT93N3NDClrhFr/jxN03zu1rAoz5tNNQSVtDansQsBDy1EtAxOVptG1c9wJYwVqzqu9wEqVnspnDs/zpOx3NdVKvOj+NnVsBCtgJNlkqku2U9x61BvOWbVeF3OzT7s3M+n9v1JGIsP5ay/b1xfhDw3y70+3gL1qerKUJRXtRiFQphRmaPsEo1fuqL10WL4fEGIyTHRti33t3fc395yPp9nJSjgiUJ80zTknOn6liY08zlWZanWB9o24ENdHMsCoO4czrIO1qO0LPTiRbjS4k/EMg+i3vq3Xly34miowzqmVY/Czx5GQsnzgi+fQ0hqoRq+tA6o1yc6lAhNwBWRGjDtiVj5JynOVOg51Vp+0wziOk8yqiwiUlLQsWSZpBiC0jtEIcdEUvN0QghzSLL2BKoS+cV9cA3OaREmto5kJmyZloxOPU6dSyVzxdposADA9vf88WKQL6bljDDPRkmv5lf9rkqzz89gEarzcdZPmxfNR/Uzfsz4NIyFPuVC/JCxxMOLNZ1d5NmzkHkizZ+rIYtK8ShYBfXVo1jlzWck+lLU1zmHK6BTniI5WMHXtjcVq/vbWx7fP3B/c8vpdKJvO7IOMC3nUs+z3+ysYXAcoQB2m82GzXbJfMwVmSUjMOfsRWahmutsgBNXTOUKV9A6aZMJ2ZTiL5fDqsBWzEBkq00w7+Qpl8XCj6J0tcpAmGEyLCenpZ6kpmJretYVrGfe0ctx+75ns9kYRjGWdKJCzJbJCDE+deFVZhB57VWYK24TzXuoCsPXWQJVJceqheKp2c/ncQotGaJLQNOOUzYd/XBZ+vrc6+NFOKHLFmcGSi7TVysjU27pEzyjvh7jjw/xnxufhrHgw+7Zx4zHpbFYSq9xbt6lq7FYG4yaMgWHpmyxuKxcRtOixyNz8Zl9jkKAWXQWDFxzxBLrtiGw3W65v7UwhKy8fPmSYRjY79+gzvHdcfkN1X3ebrcEJxyPeW5xuN9v2e128y5buQPOOUJJm1JDgAomfujaqWVCLt3iPO9YAAGPaiKLI+dkeKez1Ke56eECoEzZznPmtNSdcg7Tys68GjV0cM4EfQFyNjxkncRqmmYGc+09y7nX8KV+dzUWroYYMZGDHayGdzkvFOkZA1idW8555s6klJEgBOfgioi2TqE5MfzI5t2lUM662HC+BVcbos01mY24wqwYp6rWunMuWahzdikgY30/awjowrwOqrei+uE19GPGJ2MsJBeLeB1CfDTcynWfQjXj1BBwjy7pNHnqCkpepRZL9WCd8NZwxjqe26IAkYCKxbmiKwZnjDhnC1i9sR5D03B3d0fTdWz3O4Zh4OWLPafjlvvbnqzj5S9II7UlX/CeJjiQhk3bsWk31nJvs2G721kf1FLQlZLSttUzyoRyrs6VBj21sEzBWHwguSlxcEHHneB0IWxVQpnTEso9SdHp7M1Y4sRIWoecCLJUpuaymOfb54ymtZCrPG3bc5pi8ZJa3BStXeGUkNhw7zY8uJ5daDmokMaIEyWguJyI0wTqmFIhWomQJJOChY9ZcpH/83gCIZSMkSrOGTEvxWVyDXHAU/qX5gQRIovDuQYb1+HMc7v5erHa/FsqQS83v+rt1TDC8B2bwRUTq17gyhixOrHyfbU4UpM+2TCea234U8YnYyzgMq78IWPt4l0gyzBP6mt3D0BYLL+UXH01AOYuOwRTj55jwYJlrI81eyxZCd5wgtZ79vs9N7vdTDAKg4UUL1+9MFzlN8tvcCJkTUzjiLQtkk3ZumJ7cz+MEMwLKgpS62tloe6Cy1xO3qeJVHttATkvcZjioq8+JyJkLFux/neuYZ/l9ZbzWV2nlNKsnFUlBapX5lKoqDS4S4JW5Z90RUt0EJmbBBsfxfgaKeW53+k6JTyHJsXV+ZD7X0fFVFhf17Ljf2hOPhdeLKMqh1G+/9kjlOfX7zMw/anK7kqkCai7nW2wC662Dp8rRvJT8MDnxidhLISPU2c/PNzVxRbsJjnTabwyPvXmejW9C6uBuJw03vuigu3n/hUV1PMF/U+kIuVWCD5lY4jjyObuBa9fvmK/3ZXaDFtENzc3/PrXvzZm4D9Yvi/GsbiOSuOEsO1oQ8N+v+P2bs/LV/dmyArHIDSNNdJZK0f5Zs6kADMGAYv77iXMQJftiGFODc87Jd7cWUqPEJyxVlWQBMkl/CQzdqFqxXZN081Gwyl41xBdRFOGZHT+rEpORWIvl3i/eCfeOTR4GrFUcNM0vMwwJeV4OnMYBk7jwDja3T0eB3I+IYSSRTOwt9+083XJKTMMJ5y01oqwitHk0pYwXeEVMZFF5z6wirUwvAYHn+XYyJpq/nS+fd9Yeyozr0MyzMzVAp7rqqht6UE2iw9d/1+Pvaa9/0XGJ2EskGW3ub4ZP3Rc7/bTNK16Vlxb1iXmAy7Sqrb41hCnw5W4vrI51/9bXG/p1Ay0bcu2tz4WaZwgW/4/pYR7fJrzNuS/YVvaDpKFprFdNYRgepQp4cXhQyFs+TBXtOIdzdwVfRGaXXCassuKziHU4g1YaFF/ty1g65cic0pIyK6AvslS3JIX0V+7mmsG4sI+zNGMqq8TWBYwUlXNZS6G1j4f5r4oXZdMEWy/Z9P1NK7hxGjtBqO1QBSXEPFETZeeoYhBt0lRN81CRLbLKpS+qU4ucyLzYq/g7MxiXebYNQbxXEiyno/fN5ZwRZ49/vp9lx+sSvMFp5JFA3XtyVhk/wcGcP7UsTYSsOyk9bm5b+ZFyLLKaqxSVfVRtIqkLHoCzhWWZ3Wly32Z6xKyfVfXtLShgZQNKFsZlhjHohG5jE3XsNl0c31JLr03vBQ+QrQdWlrF+0Djln4iUXVuiiNSCt20SP+khKrgVKmqTnkFZprWqJRrUftx1OtizWtcNRRqalLrbEUubr+lZv0MpKn3hTmpkAXvG0iFaSpLmrZ6g66g/g4x3ZiyC4YQ2HYbdrsd225rXlVVIi/X1hVgOudMckKbG2YcQHXOsq2zZeu5cj3qHEkpUcvQccu8WXCE+u8lbNEirjPPtedSnM+NK9BzPU8tvCyhsFvm3nL1dN7S5OI3rn+f8oGf+6PHp2Es9Omi//goaknlhtb05npnqccyF/yyYe8FAewZpFhEEJdmY2E75Qqj4PJ2iC76ln1Jc5LtvU0IbH0PmCFp2stLPhdNjSPJqfECQgJNqCamaSBrRMTovHN7QOdofenE5auXUCeqWsNztbRmKNciqZ2sOHAXu5hlfZyalJwAmoXoMpI9c61B7Zq+8iTWitv13HwBXFQsrMshzyHcXIOTM8blSCu6wSIoI2LhSN+W1LEPtCEgtfw/KUkMZ7BUqZKmiPiVS16PK8aH0NV6K47VTPmuZLecS6bFyyyAXOfSh8Zzry1dzp+GJs+FKst5VTOQZkMA1Zhceh3LZxNuVWV6baB+iqf+3PgkjIWyUF0/Pj7Mb0/oTP2+NhY4cCtKd7ryIi48kbrgUNa023q91y4jWush7LXg3AzKGZkJOh9obl5zPJ55+3Di9uHh4rzb4lEM48nwjeBQ9YhmUyhfue2kXBaIlWmHri3nStmbjYJNiksPUGnMEOQF9LPFat7DuvtarjgHOhOQtP4tQm0rIBXVlwUkXYO9dbdXtexJSgm9KowSMTwnC0bGgkKOK6laXdKsoWScgjN6eXCOqMlAVs0l3DBj5XD2XL2XxtCbDUUNe7xzBIFKQfAzDpTRrHM4FVcFJM+mPlev/dgQZD0ujMYz7Svs0OvjV0xjKVEwcJ4nxuhaaPqnjk/CWAAzSLjm169vQI2p16+tn5gr8vTpZ2ENgV5ZXbu6dryy8FRyYT0uJ1ONWc5LMVPbtnhxjKfzXKq+7TdsNht22+3M0c3bht3uht/89vc07hJsUtUimpPILtF0G+5ubnl5f8d2u10yH1kZ4zhneWYasy7lzUmN9hzPxvnYtBsUK1KLUwmpsrK7vbGGPVnwoZCWwBS4Rc0zcB6nMmcw1oI+FfNZwqs4/9bJ5cXDEMc4jRdGeB3jV0RWi+p21jz38wBKYZ3j/sUtL9/dz8xNTRFfcJVKGssK05QIQc0rWHmSS7VmvehPwfQ5/CjX1gyPv5hD15vZc8Zh7d0t3sB1qPw8LlHxpgsB6fL4nMr9RYYnr49x+bv+oLIh1VUz0IuLtNDa1bq+cc8Z8LpTOj5wgYSFvi2gs7VevUVlluKTq52lnpMRfYzU1Jc6hjyanH3XmO6EUyArQzPNJey77f7idIbTiZwjwQv9dsOLu1u+/PxzPv/8Na92G0SEb7/+iun2xP39/czcHIYBlxOhaVBxTKOpTp3HkdPDI999966kLe3aNs7jvVWzvnr1aiZ8abDWiCklWh/oNhYyxZiIOeEkENpmrgNRVSgGM4SAeDNAORWj5gFx+LBUgKpi7RdW43pSV0WzXP5TB+KNybnf79nvtxwOHVngZtMzpcwwKTqM5Ij1MI0RVW/VsPXwWnqXyHKPK5a1zipLMci5djhTo89/TApiZlheP6eX+rAXGMTaM+XKC6D4DlVVHaGqwa43OQuFzQtaFTJ8+ER/pvGJGItl2MVc/rbxfIjyMVGPJ/mPC9dsfZNzqSlZGaK5Q3ia06cOQBfsQ0TmfhN9qftQoWgx2G7dOG/sTmefjdGk4K6HQwjO03pTwNrtdtzu99ze7BARTieTndtsNrNnU3ur1hkfY+Q0DJzPZw6nI9++ecPxcCDFTPCetukX5WwgZqus3aD4qhTuHefz2cIFX/gdvsUFb8BsFlJOiyixlIK1fIkXzVkiZa7lqKzLlNITaXxximZIqzCzHq9tGzZFQavrOo7DmbZrCEkQJuKUSvtH0Ggok9Hy7X4mKotxFYbUMOojC2zetX/IGrzAE8tOvtpkZPWoLLjX+rfW19f8lsJoW6je83HMiLAKrT+0N/6c45MxFhc4Q74MR56+72PKDfUleVIwthykhAf186uYzrIKgqhVSpLTjP5XJK5iI7nMvqgZl5Subfniiy/oum5eNHUHrgv88fHx8lQUEJkb7vR9z7Yvili9SeNv3m+Yponz+czpdLAq1KYhFb2FMU4cTieOx2PRtLSsyzhNTFMs4UCR+XMe3wTGODFMI/f3t9ze3rLZbQ1oJpEUvCZUfSGBFT+fmmUwgDJnE4OVXLMazEai3svaNyMXI4EucXYuTFtdXfssoE7I2UhxtQXCbr+l61sOw5HGOwgBxTFMhecSk9HFUy4p1dK5PsOih2n/LzKDH5hfylxr8VPi/csMzNOsyMcAzw8d7wlomf36DRjfdG2W6ms/+vQ/OD4ZY1HHclH0YhdfXlvfvA/fSBE3V49ej1zTpag5ec9gG1AMhrOFYmnsYtDc5XnFGNExcrvf8+WXX9K2rT1HQn1GeqFt+7nL93rURsW7fsPtzQ33N7dsNhu6xghGjQ/c391xOBzQnHl8fKRte25f3EOG49mMxMPhwOFgfTCGaaTd9Khz5Mk6glu60XptvHv3jvP5zOPxwGk4owKhbSx82mxQXao7Y4xolhmnqUbCeqlGC/vSImQ8X0etFbCXi2d9n0VMFm/uwDdvxktja+ehbQP7/d46tL19W4xvQ87QeMfoHCLJKtALeczkBl3xZBaAs363E4e/2iR+rvHcb73GNT4Gll4ebMmqPD1+zdb8E3Ar+MSMxcUNk+W5D97HQob6qd+T0eJVuJnWW18R0bkcGFdvyApsLSreAkVERdntdrx8+RIy1kwIIbkI25auc2y3RgFfjwoGbjZWqfry5UtudntruOPt9tzdWavC49GaFD0+PhK6lqzC+8cHHh4eOI9F5zNacdd2v6NtO8MtsoGQ42hg4+l04nA68nB45Hw+k3PkNA589uIFtzd3c8MfcLNWRErpglOSSWiymplUirBQV/ojV13MjJYUsBn2cl2rSHJt1FM4CrlkoGbAtpjuEALbrdXImOAPOG/d1WvVqhRMwnABE0DOYvUfemEUrH6oyvDVURfdNeD4Qe/04zNsxsWWWbN+dXly/r55j1yKHC9GwSnWn1nCGbFQ+jnP4md0LT4hY/FUYwCW2PJDln9uRXr9fLmgidqZfHVMp+ZdVHdZst0IMZd4FrdxghQhlPmmFIQ+abKu3yLEcaLvOlOm3mw4H46G6Bfp+DiOVm6+2bDdbp/8PlFLhe73e25ubthsNhehy83NDU1jbe1OpaHv4+Mj4gKPj48cDotc3zr0cWWxo45Q2vmllDgcDgwF35hSIkvmOJx5+O477m7vubu748WLVwV/KWK6K4KZQhG1MUMiadXLpZTPAwunQlcp29VinFWc1p6dMDM9K81ZSpjWdc3ccX3NIJ2vY2EmzFkHtTDHXufie5/jItTYv3I06nF/7HjqDX94XHsd9px/8lztFrc8/0/Gm1iP7zUWIvKfAv868LWq/gvluZfAfwX8MfD/Av+Gqn4ndmX+I+BfA47Av62qf//7T0NRTJ/AlYa4ywnU1+sNWEIRpSkYw2LF5y5O5ZqaPuXKBVQgh0u7bbOftXy76qVLrUD2Ct6jPuDFkxN4H2gd7Not+36PxIzTzM2uh5zQNOFcwzic2HUd+93m4pdbuCE0wdF5IbiMk4kutKh4Nrst4h29XzIS337zHefzmRcvXuFVOB9POGfewKbb4EPHOEQk2GfGKYH3tPsN4zgRhkR0Z/M2suPbt0feHybavmO3ecf9/T1/9CvlxYtEEwJdaJhSxInxR5IT8yLEEbPiou3q2RvW5KKiJFxSk9yPRQagZIdc4YNIApVk9PLkluyUZlxONN4zpsh4OBBy5rbf0ok3mf7iuTStEJLAyUJFq0A2UR4VE/y1itcyH+q8EMX55R7HkPGd1QORBC9L0dz3jXVK+LmQ60lq9clC16u/8vzXbHjKRnbhkVwZj+tMy3Pf/xcZP8Sz+M+A/xj4e6vn/jbwP6jq3xGRv13+/R8AfwP4p8v/fx34T8rjR0dN7dWL5HFFPux6KOsLm0mg5im4K4NbY2VYHLrlog3Pn8jVV84TZX4ocWYeS12D+b7KhA/KZtfPhNBNv2XTd+SceZcPtL6l7zZ8+YsvL75jv9kSGsfrFy949eoVNzc72lJ5Sc4GSBbef9d13NzcMI0GlE7TxH6/h1Lw5b1J8J3OEylaUVTb9qaV6T3eW1e0zz//3IDQ45Fz8TJijDw8PPDVb3/HOI787+2fcXd3xy8+/5zPXr7iiy++4PXLV4SCXXi3FLNNaZjrVKJaQVaDGZbTOJCKDF7wHpVmNr6VjGeyAOa4m2aom4v1AELrkejY7TZ88cXnfPf/vCfliPN2sZ2DthXGUXHB4ZtARphSZIqRnK1e05f3ChmPt1oc60DBtjOjnXM2HQtvSmEf6ixfjcKcVZnX/zMVputMhiyA6/Lk+vX6fTq/v87FS6NTDUl5nL2lZ93sp8/9hPG9xkJV/ycR+eOrp/8U+JfK3/858D9ixuJPgb+n9qv+FxG5F5Ffqupvv+97nCwxoylK19RV9TIuRVvKizMhZZ2ys9eACpDqOr67JMV8bOeQKyadr0icGhdAxJkGgqh12SqNb4bR8IommDx/53urFi0pzMvvMPJS13X0bbc0PM7WRYuc0CglFSu4fkO6mWa3fixhiQt+DgPapoetI3QtXbcp8f1Ssj9ttpw3Z06bLcfNhtPpRIqRIUVELaZPKfH48IATYTydDe9Imb7rTMWr7eZrl8hkUVz1/pwU/KF4fMGbBumK6q2qJFl4MYt4iyOuUoKLzuZEaBy3+y1t2zLlxEZ6pjGSojK1ip8Gu+eZWWrPXELbMETKtMiWbltXHHuHoaNa2aR5XnfrKbLMwZodmu/kxeuX82q9WD+woOdxGSJ9KKRZexHmeawNzPX7PvJ1P2L8VMziF9UAqOpvReTz8vxfAf7R6n2/Kc991FgIrIAknQ21UEuL60XIC56giner4h0u3bvlQlJCGGaj4f33/+znUl0+Hy0lR0QQWyBezZ1W5TyeGOLAOI64JATXsO2VsCsd0dU9sfK1U/im72m7YJTvep5SOpYbCdpwjM527CZ0DDFxHs1LqpTogtdaDxMfnuh1Vixkpk87oW0apmmiGQbyFNn1GysrT4lpmnjz5g2Hw4EcE7cFU7nb39j5r8hHzpnKeL32F7ob3gRxcy0RnxeBNZw2CqkZmiqEVDtpORRRlkfuPwAAIABJREFUA0f7vmW77RnHiHaemDJTykxZCSESsexUQgup1G583cwVrAhNJmCRz3dqWiEOXWUg8jPLetnxLxfhpSdwDaquw4WPL1598vj8+y/fJ2sj9TN5Etfj5wY4n/tZz565iPwt4G8BhLASWpkfS+pshq2wKsOZwFKUq1aGwoxFsczKU4ad1EzG+jye0q/r58t5zn+7ej7Fa3HOQFBL9SXGcZgbBY3pzMlbKz/XeaYccbrItNXRN1bSfrPbs2k7E70p5+B9xWfc7EV57+nbjrGJuNI1a9tNNH2H86Hszp6pLMSUEjkpIVjBmaizJkUlvPECjfNMYbLmPKqzAM04jpwPRw6HA8fjka+//ppxGLi9vSWUQq+u69Bs2aAlMyFzCX09Z1+qUctFJukigyxSi7YCImn2gNY7pzgI3tF3Lfvdhgc9gmvZ7jLncWKM4NyIS8pUNEZqjL+urFUtiZtn0pu2kOs52nVPT/p//DAM4NobWf79PbyKq8LGtVfx3PfO18g9BXJ/7vFTjcVXNbwQkV8CX5fnfwP8evW+XwF//twBVPXvAn8XYNM3dl8vwB+ZmZR+teiXzIfDSZyNhCOU3V6eXNjl5lSUa30ml7X+cuUmqi6fV2msIAqILs87YRaYknUcS7kUcTkHKTOczkTNDHGy3foqXG3blu2mY7/f0vc93pnhCc68hUqGQpQUoylrZaXvOtQHmqab8QJfPIlxskrOGEfyaHU3TdPQ91uaBrzvaLzgu47ghK4xvY3jNKA507btnDmJ+xsOhwOHw4FxHDkej2awmnYmnwUU8R7nzPALJhI7DaOlgItgz5rQ5ZwrxWxlkZaFWu9vkBIkqOKKQetCg3Y9u92Ox8cjaKJvrSlRGKaSdl274DJnR2ppvNMS+ujTjMgFUJmvjMfV++DSaDwffizv/9jrF+/Lz7/+fUCrX7EYPxTG/EXHTzUW/x3wbwF/pzz+t6vn/30R+S8xYPPdD8Er4NKCwuXFr2BlZTvW15+kzqSI7D77DauWbu6yecf1xX2u0MhebFBf4vHasITKD9CiepbxInRtg/eOlCLffXfgfD7ju5581TjEie3ktYEQqvhVyFB/U6VOi1gnrZQyaUqMKXI8HpmmiSzQdT1SuoinpJyHiRgTwbf0/dk6nfW9hSOOGSdwztHmhMeqQYMPhK7H7W/Y7/e8ffuWr3/31cwkPR6P9EXkZ993eKDxnlD1NtVo4U2hsdt5JzPNpZ/I7EFkWJenwyq9WaTxvDia4NA20LeNhSiiONfOHeJTMuk575x9RVrdJ1c9xMuQZ33fn1tT12n5izm3KmF/6lNfCR098TSe+bIrb/jCwKxfU33y93Nh84f+/VPHD0md/hcYmPlaRH4D/IeYkfivReTfBf4h8DfL2/97LG36f2Gp03/nh57IWrHJxgIwzVmN4Od4XlWtOtQtYQe1v8WKE7Acc/k7yzT/vc6pgysyapcal3Ysh2hDRkkp4nxTnIdMCI4uNIgm+iYQ2kCDY9O0TMNIOia+/vprvvjyV09qQ3JM7LY9bWsNi33waCouvJr4bZSqqWHVkCG04BJ5zNa5Xax+5Hw2L0YVmtCh4vCuoSm1K6fTiWkyWrSQC95gOJD3nqTJQpxpmq95KGrlKSUe3r030d2UGIaB0+lECIHbvrcmSIXBmaaJaRhmqnwoVZwxWhewGpq4ZJ3Ck1x1kGNJW4ozjYlpMlC38YG+7wvzVRinAR8cm66BbM0NxAc6H8ga54ZBIrV0XWiDwzXNZQjqrQm11vCotDm8zGR82Gt4ukCf7wRWQdvnPN+1avx1CnbtnazfUx/9M+BmeeLJOfzU8UOyIf/mB176l595rwL/3o89CRElhFICHmuLe5AgaExzJ66a0XBlJ4l5CTlmEZPitdeGNyKKbV1111ISq8a5skj6A8tEnXed6j6b+xp8wHvQHEsKLoEomyDc7nprPegD+97YmtN54r1muu2GlCeUS6Wsv/KrX/D555/Rdc1cQq1Fdfvt+/eYEnY7pz5bJ6gzL2tTpPgMyBQeHx/nBsvjMJAUEiODDITQ4kPLSGI8V2NQ6jZy6eCVE912Q06JYUpMw0TTtahC32/4/PNfmPFLCe+CxdcZFEdWYRwsI3Qex5ktuicxxoE0RYZhWCQCvfV4tX5kWnZ+47DklHFth/dGU9c4mmJVts5it/sbfvHZa949HImngcYHtluhaQUicyjqxZFdOb9swsGN93RNw7Zr2WyWedB23ryVMl20GC8v6wW7nrMy4xcVQK/PmxecP2gs1nhYnZMVBK6SAIvi9/q7Lz2hWZwXE4x+blTj9HOMT4PBqQo6YDhFKpa6dNVqpEjj6QxQ1nyY9/ViCwSLgXMqrfByLHZAgERNx5pru6QvnVv6NNTHi8o/lgyGhBFSRPKIQwnCrCjdiOI0opoIoSc7ISYlonTbDbe3+0Khvhy7nXVGr8bQcA8zKC5VkLP+jssdp0rzt21g13ekNOG9sOs7hjbxeDzx/t2R43kAZ5hFaDqmQk+vug1ajEUjmfZ8RoIZqJqOVV3Uth1SvBk3h4e1+CthTXrGmJiSeRCVOzHqxOH0SIyRrrGiuVR2fecbskY0W9cznDApRMWUq9TKpJIY2N00DfvNnsPjuXhFQu+tWncYM5NCVodLRQoRoSu/1dtUIXihCcvia5zhXTlbmfyk5qEG9xR8r3/XmVixlZqJsNcuF/vywWtPZHafAfCusDdnLPg6O8K8aVZjJfJhB8Le8wekwSkCm8Z+bRJQrZ2+oSu6ESldKhHlouUwDxWTXHNCckLWOKs6UXZR54zsFVfxsi8svkW7c91C4Ao/8cUrkIR3QiMGYmbN+CxMBTvQDYxT4jydTSeia7i7v+U8jHM6sI7tdktb6kWSWnVmTGZ0urCxXqY+sJ4RWSPBt9YyAAiN8TRuVIltV4C/qrlRgT7rUN61HW/efMc4jogIMS5aGze9p+t7k7HrO3xjgGkYG3a7HaIwFgKXOj/zSsR5sjduxjiNDONAjHb8x+EAA5wOB96+fcs0nOcsyrbrcU1g1gjNkSRKDp4owjla+JHGiVzqS3zJuPR9f6W8ZcV4yGiK4mt6umYazCMz7EPog7BplunvXalB9s4kCYuKmH+m9d/FQi+gbZ3HM+bClcf6ARxhnWK2I+Z54a9JV+vN7HrtiMhSt/OM1fiD6kjmBFpfysbnH12a6cTBcvMpzZLzZlkzmobSO8JUnpsCpHmnkMCTEZSkEdGi9ajCQrYSRAIVXDMfdK1aXWNne7fXwQBJMTEVycoUE3mISLclDlYivt3doS6RculFmia6rmMYR9r20ru4udmx3fVWr5IzSeO884Qi8Y9bskRZFU0JN0vFm7CvkhCnhMaVtKaj77fc3rxgjLbTinimBF///g2nODBOp7k4zXsP+458W3CQcUB8kQncFLXyKTINhrmE7aLbkRxoTAzTaOnjOKFqu/d3D+84PDzy9u0b3r9/z3A+z4vj9YuXVkka2pmjUVsajDlyjJHT8cQ4ndGYmPu/qmVsDKzNxKwM0bCknDOykhDMOZNVmZJpkoRWaV2gbRxrOVTNE+LMaHonVmzsBK7Zllwv2Nm3uOD6+NWavTYYF1kXVVJRCbPFcBkyzPhcNRgXhqQaymWOrsOhZfwhhSFkNJ+pLr+INypSXb8o3pkRqLJyqkpMyeL7Ur3YzF6CQoq4wtIQEirJyE3i2PbTvCGE0p/UmIWyUt++lHYHaLJ5K03dN0TxXgmNsNs07LqWmCamojClPqAukNKAC9bu77qQ7Pb2lu12O3tLqmr07CD4tpmbIJnGxqJ1OcahnLedcxynWYyn9Z6m7XC+w/kW7zpUAlk9b96948WLF3jvLR06RM66LOBpmixdLeCyYxLBBW/SfONkLM6iXnV7e0vXdUyaicM4F6hpDY984PT+kW+++YY333zNw8MDw3AmTpZG/u7t25KmDbNhamumJgjTNJLGiSkO5DgVsDJzW4rbmqZhu3UMU2RMleOSZ4NvncwTa900lzMBaASa1RoKYtiTr5WwWPj0pEZILaxZdvqFEVwXrYG0z2Edy2cWyUbzemcNTf8czlGdlzUloBqecvwZB+HJvP0hJMQfMj4JY+GcY7fpi7Ws2Y16MVe9METMkNQQIjTzDfRiXoUW1iGbDi/gg4N8BvKsNxn9dytBWZ1DETMY7Xxe6+8SEbqxSMUpqwZCDjSgEnj58tXMT8jOFr9TywaISAlJLi/5ZrOhbVtyGoqHZAutaZbGx2kyI6WyNKFZaNDGbFwmHIzjwL7f2vO6KJQLnu12yxdffMFd0cjouo537zYgmU5M0cp5T1fL1KueR81g+MDNdsfNjaVUQwhM4himkYfDI6fTCVB829CnluF84jQcOZxPHM4nYpzmrmun04nH44EYjdUZQqDpSr8Ub5WmTbCMTdaEVqWt8WCAbOGPWL+gYT5HnMcqbRMhWYVxW+pMGm/Ubu/ArzALIwZazYsKBIUcZO7Hug4Dnv5/6TEYX+Sph7D+WwqoaUm8whVyroQh1yHFWkLysr9INRZp9jQuItZ5Y/05xidhLDY+88/fn0x1u9mSRIg4kgQSGBkKx/E8zSGHCDQum2fQrIqHpoloKXi8QB88u87jGXEkvEDiS8gRyHSNJVzJCYdlBnww/CO0ZoymZO5vowkDrdsCwLaI7xHXkXJLt7ml64XQ2Hw1gC6SshKCUaqvkeltH3CaGYrQTAieEFqa0NE3bSFyVcjMoYVMlCZH4z1pymhyBNcRI4zjGRpPmDLBWZPlnN/Rdlu6zQ190/DZL15bifrpxHbX8+67t6bpOTxwGge67Ya276xEX6xCVJPVTey2O272O3ZdRx9MBvCsE64JjK3j8d2Bdw8HM679juB74tjh5NbYrIzc3e3puob3jwN5GFBJVpsSM2400d1GYNNBasxz1BiJkxnU9+OZrm+IRNuXZcI1kSQT4syr6rXBT5l+iGhKeG3xLtJopuPEzide75aCwrv7R8QbWJqjWvGZgMtGCX/eSGTWG/2CNUCYlkVaSbvmUXBBzLsOcuK1ANZqFPz04n8Ri1zcyrO4/vzPYyo+EWNxd3/Pn/7Nf4UkwikJkyoPh4G37488HgfO48ThNPB4OM86lnHKTOPI+XRGj4prQtlli/6lD7Rdx+3tll9+fsN+27Dbdey3G/ZtW+jOCacjwSveJRyJrJHGO7LEhTegJXNQ1rnkBtQDAZENyIaUG45nB+3eZOtK+0TvA6hpSKS06FeuR9WorFWjtRvZXHUZwhKaaRHlkcxwHIi6yP6bgyGcHw7kU6YLHV3b0zYb8hR5GL8DFwih4ZQicRy53e+56Te8e/eOeFQ2qWd3s2ez2+GCL63/qnix0rcd+23PzX5L35vYb9d1uCZwm29nZaqvv33D7776hu3+ni503NzccXNzgxOl6xo7WfeesYQXqYRTw3AixkjbBU7DiXfvj4zDkTgOaDIhndYJ/a6361XwlJxLK0jfkaaRYTogCJ+93ht35OEbcspsN/DrX9/zJ3/yS/7qr1/x3/zPdg/+xr/612cdkJQSOVr4kqJ/1lCAbQTPGxEljJdAo6rO13Kt7XHhsQhEPvx9H3peRNBYz+n54wPwv33NX2R8EsbCBU+z30HMnN498HAaePvuwPvHE2/emZs6TplptNTiONoufD6Pc+4+ZQPmLLQwrkPXN7x923E87bi73fD65S2n2wnZbdj0JqbSOMvPBy94VZxvaANkTZbnL0xEdZlYSTxaQC0t3TqccBqUrJPpVwSFrBY/a0RT5HA42G/9QM5bxArFQuk5Uq6MtRz0Yn1IwcC7dTycF6BsdsOzkqeRKQnBBRqvOLGu72M8Q9cRR8tkdKHBFddcmgbfGOlpu93SdC2U1ohd1zGdBxzCrjR9bnxgKmlejYnhdOZwMLaqKW0rwzBxPo90oSmAZEvTdEDm1WevzcBTOBfJmirFGDk+vmNsPINXgodBII5nUlLG8YQPIEVJ3XqanCBlYh7QPEIlcHVbXr3ccfOFhzyw3wf+6K++5q/9tV/yy1/ezdfxj371elYIyyuGaYqXKev1/9WI1scLklR0z34uaX7yfP23OZDdjzIU61GNxIUS+8X4AzAWCjyOI8fTwD/++hu+/uYt794fOI+Zh8cTKgHBo9mRkjJNkTRlTufMOCqpAIPjmMgJnJsYfeY8JI6HM4fTe3bbhq/f7Li9u+H9rUnL39/e8Nl9XxrgCM4HXMjgFWLC+WxiPBkQy26IeCTnIpiqiLOSeic2weIQcS6b65kgZquaHKezgZdXxqLGuLUa1BVl6pQSAQ8ieKm3yRiPlaJd3++SlbjV44sa8SpNA4MKHm8kJ+dxTtFsWZOuqQxOKwpzdLi2mT2LpjMyWOVdjKFB1LqotbN3JgwoMY2cTiceHh44nU40TcOLF684nCZOxzPTGNli0v7ONyCZTbux723CHFvnQhL77tuvOR0fOT4GDo+WITk7hWkijVanIt7C0cqF8M4xDRYaBA/BTzRN4sV9yz/3xy9pPNzctHzxxS2//OKOu7slM3V/2+FKU2SyFuk9z5SeX6zA7Pmtd/g62tzMv+fCwKzSq88teJHNhYH40OOTz3r35PvWc8zG//qhJfiDxidhLMaY+Edff8vh8cQ//PPf8/U33/F4GMjqGCY1MMoLOUnJu5uY7GlKpEnJ2aGaiDFY1y4gigF/g8+cYub98cTb44n+zQNvd3tu91tevLjl/OvX3N903GxbthuhV0dDJqZEOzm8V2p9ZC6ZGbKSUzRuh4tAImfr93k+jyQ9mxydtHj14M/A85Nj9gicnw1J1eVMufZKsUlp5smAV4e3LMJq4jnfkrzSecfD9MCYYtmtJ1pvizI4IYrSNwHddIVWjvVbbTPtpmez3dL2LRKKcpQmKL1NQqlURdNMlpuGgfE8MJ7P9jiOuFJoFpodTTBD2XWVeu6IU6QJuRi9ZjF8xZZuuoaH99/xtl2AXhHBDycYLRsiWolQpftb1zJNZ3KGvoW+g75L3O0Df/JPfUbfeW5vOm5vWvY7T9su96PxybJqmqiqbEE82T2/UA2kXMYCLtqzTa7ex1XIcLFZPJNSva4pWR3/Q8bDJsdl1mb9uZ9rfBLG4ng882f/4P/mNIy8efPI4TQxjgklkJPDuYh3nhQzcUyMo3XRtpoCX1x+geyK4Vjt4Bma4IgRpqNyGAce30Pbnrn99sRxzNzftLy43XB32/LqfsN262h9yxQzPqVCwc2202NcDS0AhvWtVcZhQrJjOJ0ZhgOhdYTW4bwjlwKw65oAYMYqrvn+NjkEMkSNeDzZZcv6lNfJxjatXoadm5JxK5zD1J5SmkDAhwYXglWptn7uJCaAH3poPE3b4ptQ6mys2VDO2Xq1BlvY0zSRiZCVcTxbyrSc+zSODI9HxB95/Ytfzeli55xpfh4Oc53KMExI8LPkv/V+9aUmZW8uvVj2oO6aMRhnpOuMh3IezkzTxLZvS6hihuJmG7jZN9zdNbx63bHf9Gy3gcZH4EyMC/U+5YlcGjJpygRxTM7NihbPhwTLQlRqSULBuYq3+2ThX1W7XnMvNE/PEz9X1dCrJMnqDas+Je7qmM8Yn58yPg1jcR74P/7P3xBjZopq2Y/sqKLRhg0ke26CaRJSykSxPHpKmRxzSWXaIpuBKhFyMAFIFzPilEE8ekq8P57JvOF2Z0bi1f2Gh2Pk1f2G1y8bQjCXtupHdqmmtbLtagjiRpwEYnKI9KQ0MY6PNEnoVPBNJmJEJufcEwZnbQWg2SDttbHw4lDUWg2K4RbLDuzmYzpavGQmsboN1LHdWlrTSSClzJjNiIxpJDQeROn6lrCqjdnsWsZpsqKq4HC5iA/lxBQndm1L1wa8mJDx7AFNEY+y3254/fIlMStv3z0wRuXh3Tt805l3kJWUjWNxODzy1Vdfz0a06zr2t7fc39+z7Tucz1Y+HzpSf8O5PeFdmBdoxRecc6Q4Mp7ONN7RNMbHaVvYbITbvWO/D3S9o98KbSdoikzTCbdqBBRjxEko2QoTI7Zpk551/+1xMfCCtyI2KSpgaxnZK+Mwt4JcPfeE/s3lxvHcvy9G+S3r9C2ylOj/HOOTMBbjqPz5V2fb+ZwVVClF70DFZNgS5FSAmyTk7BhlNH2CbGXbo+YiHwfDFEFMVIVkhevKRCJzjBnRTBsmND/wftNwPAy8ezhyPE8MQ2S7+4wQ0+yW5qxoMRaNr3R0S+llPTDFwDgNhHbPeJx4OJx4PL1DvLUXrDesKl/X0TRNAWWNiFV3ghp/et+gOeEKXdsKvphVp6yobqk3yC5zypndzYa+6YuepdHPp5yICtHXBsdLi0GAJmakFVLOpdzbYvdcDVTxZrw3UDepkqeI88w8EhEzGsN5Yhje8+bNG16/+pz7e9MY/dWvv+TP/uzvk6aJ92/f8/79e47nE03ouL+/58XLO3a7HXe3OzYby7w0TUPb9oiYd6lOaDc99y9f473neDzy/v1bXNdYKOFg2zte3G25v9uy33qcy6Q0MU0JJRoBbmW4h7GGe3Y9hGzNo+Tp4p0fL4SM9OLRr4DnXOUfKanTtAIfnVwYC32STF3Gx0IKzZeiQev3/0EZC3BE3UIWYgrkBKqLsYgxkWLlVxhrUdUxaiqluQ41lUWcCqJLfwVxikwBr5SwJsGQCM6j2SNjy5iUb05n3v3+yPuvHvnqrmM6jtzsO7Z9oGkd3jtOzhryBjeiOs3FPM55kIZEILsDYRM4Pj7w29/9ntN55OXLf3HuMepce/HL+763Xc05mkJ7zjmTYqbJpsYVmr4IznTF2JjiVkZnafyUEuIMq2nbHu8bomYKY4mm8TS+w7cNGoygNQNiZfJ2TkmnEzlFpMjtdV07d+eSpLYrpzR3ZdOcOT4+8u7hLY/HA+fJKjc//+wFX375JeI6pslCreH4wDe/+3NaJ9zte77+3cQ0nBkOByZ3wpPIw4n3TcPhds9uv+HuZk/TBs5Hq1zVBC9efs7dzS193/P+/QOPx4PFgxppGthvHb/85Qs+e7nhs9db7m4853FgnM6A4RIi6QJsfngUZtaumtvv1BbIstiqSz/zQT88o/M1yEi5jlDLDaqBF5HZaGT5sLH42JA0PQlp6t9/UMZCEeJk3oGyigUL8SRlyEgp6rGGsFkVJ2Fmo0jRoKgtCTWbC2Y3rVyw7C2lhuA047KDWBORQlY4HRPCwO9++x3nuy03txtuthvaroEw0QZHDhbLK3FuWKMy4VyLIvgAmQOH4xsejyf2+3GmlT9XUFRl59aFUTZMBs85RxA/ewNiWVtrFVhgz5lhqQ4fAilGUqGAO+dwTcCHEltLY+nYWgxX+1TEMxRg2HmHD3Ihl299Tk2kNqvVpOSciePZrkfKjKcj5yniQ0O/zbx8dUMbdDZomiOvX9xyt9+gmnh1f8fj4yM15a1qlPPz6YDXSCDTNJ5hPKEp0Xih63p80zBME4fTEVVls9kwxCNd57m72/Pibsdua2GTw9LtNWvl1LyPNdY4Rj+zhh3ZuqmVEHQxDj984ZlD8vReL20RzehcewPrroTX42PfHXhqKOzfT8ldP3V8EsYChThpyblbA59stc2l3sGk61rfIpLJ5X8pQrS1aZBNZHu/wUHGScgx2U5BRrLOAkk5Z6aYkJKajFlImhhTZvPtiSk7puxJdPQZfJOIDfQ4UDHdBXTGEMQ5Uo6kpAzDiSmOpGmcX3+OY1HB2FnVm5UByW5G5WsdCFlLRmRF+7VuwLOXgXecHg9kbNJqMrXrFAcYR9y0yj7IoogespbO6B4XPK5UZaZ1Ok4t9ZpjtHqUKTKOZ1KaiGlkHM+czgNN2+ObjtPhkRgzNzc33N/d8Or+jqYNjONI1zgeXr+0JknRQszj4cThcODx4b0xzePEpBNxHHAofdfimx7xDbESuNqWRGZ6PLLtt9zd79nvd2w2nhAcion1mKixdQvTqOiq3YTpHluY6dRqO0QzWa9W7w9sgXfdyWI2BmITfln4ernA3U+rEFX/NPxYwpCfdMgn45MwFgvBpYi9psw4RmrrPArar2K8A5WMSsa7YGGG81Y7gIFTWqtHcy4AqAUqdTfOri4UR8RDgkktk6CaCB76YyY1CQ1K8pltVjqfGbuy++NNOctl053AMg8pwvE4cTxENDvadjtzKJ6LOVV1fr2OagjW3gZg/UrVXncS5utm52M8Ee/Fdug200hDDkuP01yxlyla3CxSDGqZWD4bSOjEuA/OMeXS/TxG8hQt9CrGYpoG4jjNzMthOJHiSBDou4bdpmN/s2M4nNE4EccTh0czasN4Yr9vadsb9ruOyhMZzhOHw4Hff1V5A2aUyJlNFwihp73ZIc7aMKoqoWvoXeb9Q6brm1lIyDkQzUzDSI4t2liomnOZJ6u+s2mGL0r2RcuVebLQ3PcYjHLMfC3hX3AOucQ+1vUcdiIfWykfHlqzWleG4uccn4SxWFI8lq2g9Mc0OfWMODHVa4kFJChEqKKgJd6hYjdfozNBWIoTqEZSIkthKjqy96Z94T0TkLIUuTi7pT4pzSEyuYlRzpxp2EZhHyb6tiouWePf4BzOwzSBc0pMwvt3Z46HieA39O2iu1AX9vVvr6nPtZu5ZgVaytA0OqqhCr5wLly+vIYuWB+SpiXjiiy+fXcW0wtNZe6GknGpqtwlD7xqWLN8fzUYqDV0qmGHeWcDwzAwDaZh0XVtUfdyxOFM04YSrkyM4cyma9hveiKm4NUFT0qFJi0g2sJnrzgPJ06nEzJmQGb9UDZbNEX6fiC0PS6O87XtOutWFmPE4YsEYEJ1Z9dgMj2QnC7d+hjz6jdnpAS01w2Blvt3xZB81oDohaG4eEUrlHnpWfhnSuKffvfTESU+ed8fKMDJEtNWklJxqWPMSCFlmTNN8RzU/pJaom5/Z0mzaIk4S//VXcIXVz06jzgPYulLXg7cAAAgAElEQVTVGe/IAIExT3z3eGbIlnKMOPZJUX9k6JrSa0NpfKYJ1qg3RtO6UNdyeBw5nxIiHV23XVzQZ4zFOhV6jbbPqUkrpyskKLE+GvUAV+k0EeE4ngtmMTCN46xDiXeMcZrj5uA8bTD1be9Avc6qT6zOod6XVFXIlFl2DiztmGOcz9d5+9z5dKJr91ZXExNRR8ZzRpPVwIR2MgXzcm9VBR8cTfB0bWOq3t4RU0PKGR8sJX7OmaZtuL295XQ68Hh4x+Pjo0kMFmXyS0Ng5QGkTHZuNhbrexFjnDELX1XPUKbrcGIVXzyvQFXuh16FF2VknoKOaz5E/onGIpOeGImfe3wSxkLEobS2cyIgHu8tlp8VkUJDnDLjNJErbz9MeBoUTxozOmU8jqbs1tX6D5IheKQJJOdwRGIc5qIn4zQUy+4F71uCBPIUOB0cmhKnw5mxPeHcidN5oms9bch0faDvW4JrTfMyTzxMkWNKVuLd9zgXcM5Uq67vY9NsitdhVG4Ttk2l6MzOLWVF1ErjRZ1l9MfJdDVrSbYIMSrDeSDmyMP7R4bB2JQxRlIpegLwBXBsGk/fd7PGZ9v4uYOZarRUawExVTMS7TpZqtURc4QMvbRMNEQdUOcINDR4Gt/SqOBipnXeOCjngXHIHB4fTbRnbkpbFhdGrtkEYdt0ID3qPFmV4/nE4+nM19/8Y969e4dz8O23v+ebb3/P6fDAP/vP/FVe3e252fd4lyycdQHXdZymdrWYyrRfZR6qkLKIXKik+njJi7mct88+Wx4WUtYFg1PEGjY/42ECs2jw+rn69+x98NRzeK5A8ecen4SxyKqMZXe60K9QS51WPoAt/iXWW/MR4NJizxWjJZYrAY31ai+7pXXdKmSp4npXTU5xgYydVzodOY8ebY7m8Xila4S2gc3Ulb6iAbwnp4nTOTJMGfEsmRjgOZCzhiE1ZZozxk5NihS156x59ipEDZMJPpBUidOESAJnrvc0TUzR2gPM/y7K2D6UGhBZyEaudDKza6WM04RLqRR25blSVkRMll9MBVtW5x5Km8YK0krJ7jQuWKFdSUVKMWo5F63RcWJMkUzGOeOctI15O6HrZw8hpsRQOC4eNUzj918xDANv375hPA80Lez21qm+aYrYjSbL3JQQ09bWU+8OFszi+qUcP7bTf8C9L3VCQBHQgWpEbO6uqNlX3+dWPIv1ucgqXKmtRerrWry9v+zxSRgLKClShUB1yRfmXIy2g9VJO3e48lxceDcveEfblN4Slg+hyr5nZO61uXz3YnDOOdNog5tM7wImavFWakaaxhD1thGa1shOwxRnRuEUHQ/HE2NMdASkqDrV81sDmfW5et7V1Z/l4PKiL1nFhsWX9oYU/CEnI/Ik2x2Pw9nUpYp2Rv1OIza19JsOVasXCU1Rp2q78n3luwtgWq9lvUZ1mAcA3jfAYiwab5wMFwKNt+da365AWisgyzmSfWRCYKAoi5lIUN8Y3XvTtKgq52lEYyTFEc2mTdp6x7brOR8fydFo7H0frNExRigTIuJMIl9VSNHCVjv/5XfUUZnf18ZC8kdW4Uc4EdZucTnYzAZQcOswRJkXv6paWFaPUT2Icr8FAb0MOWW1ef5lj0/CWNh1KxPbhdIdu5lrAVJKTOM474JL9kCXWBoKgFn4DB5kNtuXE35dviu1Wk9XvUKSwHlxHytDUcbJ6hYaR9c4uuiISRgmCCHStplxgsfjgEgDoUH9oub1Ic9i7SVVw2XnWN5b2g6KOGuBCMRkQjxZsxlAVYYcmVJknEasB4o1RA5l4XZdQ7/ZENNU5PcdKp6MszSiODMUqiUl7XDicaJMcWBRPS/Vr+W3NL6dsZeMWpWrCzQh0HfdDN7mkp0S71C81dqoI6QRHDS+McBVrPQ/akTjxDSeGYazpWjjSL9pef3ZS4bxyHl4IOfIzX5L1wQQExsSYpFZNEZqTOuuYE/5CNMHPIvnNDjX987G0/c4vWJmusWzUL3EVHQ1N+OKgl6w/Plz6/lS7sJynGeEhX/u8YkYi7qYlqa9ALnw7O1+mSqWbwKhTM6Ux3lhwXIhRYyfEVOViaNQo4tS+Kx4vdRF1PAGYErZiqiKUVl2fyXkTHvMpFaJGVKOTFFpm4YxWmHUGJ1VcTb9hWdRvaL1WFeaPld4tBSZ2cRXXWU2sul45Gw78DCYDqXGTNc1MxYhIrPn0zQeiZCSaUpUQ+pdQypCOoJN9gtSkVoYuGyR1YurHt3CmlU1CX6nrrQYsGsQdbJaFzGdVV+Iaim1pa7CzkajEomWDq81KGqErpwj5Mx209K1jq6keDfbhrZ1pnNRGlfPoGG2dorr+3BNkIvxw5mLq9k6/7V8/JmFqsWTqYYpr96bVlmvlccBluJfPAcummrNz5XPeFYen///ibGAZSGp81zSaFMB46w+wK90H6TyMLBwpN5sZXHltaQCLVZeuBxQL3Tpt+kWHMRJ5R+UQpzyd0zWFu/xnJiyY4t1LR9jZpgiTSNMU8L5Bt9tafoNuJaUaperK9ogNaZVYjZWqoq3NHA57zk1nKwhD4X3ICKcChYxTpHz+WyZDlU637DZWe/UttSH1DYIYC0HQmmxYN6UJ4TGQpto54GUbow4wOjaaJ3MhgmYO71iH2bIyRZ68HaeRIXG3uvFQ8E8IBO6hiY3dr/me5YMa0gGquZsyuwOY5x6J0xxMMmCHAnO2JheMkjCiSt3TFCsFkayMqYF4BV86Tmz3AeDJp668x9LO1689SokqT1L7T1LCLTc9w8cVBfPB6pnITOoX48pIsTympZ09l/2+GSMhQ9tqZJ0NktLvUKMlmMPoaVpmnkBOWc05UW49lIhaL17hOBm65yyNRw2w2GL2K3eG/NChrLwZDmWjiNJlWG0yk5nZh+fhZhMAyNnpWs8TejwoTPjUDzL51JplX+Ri7ezzrs7cTPnIRdPJyedVahOw4BifSHGOBE1lzCtpdv8f+y9S4wl3Xbn9Vt774jzyqys+qq+172+9rXNZyy3jWmEYQaWGIGQLCYIJqgFwgxACKkHdDMBybRgQDdqgdSSEYj2gJfEBCEkBEiIATQt6EHb7Re2ue77+F5VWZl5XhGxXwzW3hFxTmbV/V73UtftXUrlyVNx4pwTsffaa/3Xf/3XhsVSi7DGis+oLQOUWGRIORJixoeEcYl2sSTnUmqei0ByztoGsRiLqmFhxGh9CFnjP2ZpVgyxksFixBm9b86AnkSNdmMsuakGORYWqCcFSGEgRCVkpRBVuaxS64PXTuhRi9hyVo8j+F4/V2FpUuoz1LBMnpsZPdDJy5vKzc9Tna/ZsecL9Lw/bv17dsw8NZ5nBuFkPpQXqZelxXp6bfNoJPT/ps0N1DP6QY83wlhIKVFu2xZSpu/7sTFKs1ipZ9FqDr3m25umIUZbXMwwSuoBVPZjrdKEzDAMo95jiLqztssV64vVqJJdtTBjmkhRbnZDkoUcIoNPGLHQZfyQEJNorcHaRLNquHBrXLPUBsbhfsZmPkwpu7Z2Ul6yVuX1WuNwTVM0R8NEziJxHHq60iLQuobV5cVYsr12S1abtfJUkhoS0IXe971S0b1n8F1p1FxSqeuWx48fq4cQtDBp1S5Yrzcs2pbU98rkTEGBv6yFZMHHQqoSvXZZazFi2LNoOljKaIDbRtswphyIWVEQEQFjkGRJcVCpgr5nGDoO3YFu6Ig5EMkqwrxoePHiOULAEnCt8OhigbMJcirp98JMNcpKGcIAxQuKhNJoalaiHh+6P6qZUu7UK72MBxd98SweUsYaj8+neAUw9iydzl2FX22lFp2/U/nvr6Y3yOvGm2EsAIyUjlyKXSyXmoarcbdrys0q/pYvvSeqoQhn+fARLMzqpk5otKZlxThcs2CzvsQYg/ceYSDFnqpJoGnPSddQonY4z1kIPmr3kIK4h0Z3p41paZvl2HvyBEx9hWcx4RgTTmCMoXUTwShk7XxWmYc5Z8SakkVwJ4VqYg0xBy3OKxjEyMIshWVt2yIm02U1pNEP5KHD2oblcqnVuQi50c9lxNIsVgQ7EENpexi8GosQtNnSiO9YYknniQjGqWchhXKvt9sRs1f2rEAumhkhhFFsp3p01loVEEI9ECuG3faW436HcZmmcaxWDSKa+Yoxj16nXmM79hAdwYHEiWcR4in4WcOKNHocaZw7dR7Nw4LzkeKJ2zE9EjDm1HiMrxFOwg0Ac25g5nNn/g4/eJrFm2Es6iWri6BtmrJLMuIVxqK1B1GVsoahx4+77RyE1EsYQlDXt3gZuRSmGbG4tmZUtNy7gobV+GiGJZeYeeIa2BjBaXNiKQQpsu6kZNXKtLZRcdpiMHJKYKZeH+fZkPrZa1w6Tw9jdCHV3zEnYjnGOKsVo1DidB0iisFomft0vhgjoaZTrYYATbkOKrDrOfYdu91Oa27KnfFeazVa1yBGRgk8Abx36m3kKpYM4hzG2lICD26xpF0tsQgxerSXXLnrImCkdKZPhJQIBZNRYDbTpIaUoxq/GEgxklKkP+xJYWC9WrFeNlyslzijuE7OmUyA5BDryDmhvXsKfyfVazUt1kr3rgCi7uipNBuY369Jd3PqK3M2nwuo+sr5nh/Kn5TPxLxHyHScSffxlPmI+dXv91WNN8JYwGy3LBMIKHF8LMQk3QF9DPR9Vyb45EY2TXPi7sVC865jvlM1pV4jZeHY9RhRjkLfKz9B89ea085R9R5S1FYB6spO70XRnkgmY5dal+GsZdnqbj8MgwKWr7iZFays4yTdVnGWGfdiRM1n9SZ5pp0wktGyqj1lkzE1Le1cOWcBfsWUlOqCptGuYPvdgZ1sp1299H7d7Xaa4bDComlpW0cq1znGPGZoGmtxtiWUDERNwWqatXBejKi3V/EnMhL0+4ZokRS1/sVAkxtCCthkyaUvqyn329glm82K1VqbNot4aruEev00VFIAu4KOIEW4ZmYsRk4LVMxAwe/7HsDkKdbQ5TSzcs7aPHltMdzzcXL/X7Hms0gBmB8e6e81YwGMYFQfelIKo94jkghhII7MQ4Nzp8BVXXiZ0zixegug+W41QnmseYBEDL60LlQ3utaqTICpoS1AnynBZhx8cbdVZ8EitIWg1LqmAFCFup3DGAbMRw0LamyqhCcLpSw/pcRQBGc0W6KLr5bu64KYkXREGEKPS81kUEpT6JElGksrQJIa1fK6RbukM93Y42TZLFm1KzarNYdDh++OimOsl9oFPXq6ruN4PNL5oaSnDSl7YswEn0o6NxYpkaRYqDUYazFNOV5Agn6XNrdEhDh0RDS0nHuMqh5mefLkCTAoGatFQ5ycMZKUQi7F60taT2R8TRPnoip1msKeU/H1vdJ47R6ap3pcJdPNCFjZUGwUzAwXVPzidN7XtL1+UdVZed36mJLdZ0N+8Ev5jTEWoUy0pm2K3P9AjGHCIkQpwbWWQLOhdlwA9WbFsqgqEagalpCVxWmS7rqmVrKWUZsTjexQMfgM2aTSKVNojPLyDUIMnhBiaZRcGgg3LRcXF1ys1lhrCWHQ+gf3sEQ7TOnbMXszNmO+797WrImIlMIofexsowg/KIYQI6nQp02eql0b05TrODFGlT6s+IfNwmq1YrvdEkMmiNLGndFr6YNXwR07hXqHw4GXt7dst3vtXG+tMjuNw5iGIQY6P2CisnLbbHBO8QvDxDMAlHxmVKgn9GpsKuhccaP6+K0nT8gMIAPG1v8valHVsJBVy0OKbAG5BPdGQ41Z1F/FksbNxugiDg+xNKtxPinom7ANoMgdTPc7FQrHvMhtzGZUgd2soeZnlMw4+0h/j9SGUHf5ksGASLAGSTIW+BirBKWUVeNg7pLXhTZnfOpp87hz6SIrF7ScyzlHuygp0ugxZurhIbngHmNa1WDyMKJKigmoPL5tG9ZLVaZ+dHGpncEzpDLRcQ8DVPWzj6lSc1JPqiF9qb0IvqaSp65myZdUqZ0aE01GKQLNicfljBkl/Fxxs2sKGiAG7S7WHQdN/eWszYyPXanmLLcLxSi6TjGO7XbLbrcjxAExhqZZsFhtWK3acUGEkkXJ2ZTmTZlklLiV4V63tvq5Q6gGI4/GMgye9WYF4jQzZQWYsI5qLKrnVdkVlX+h/2lOtvnKF8klNVxDlnxGYBDuY07VY5nf03koUg3FdPzssRbqnL6Gh8OR0bvivncRzjzWH8R4I4yFGEOzWGKahoAQJZEtpGwgmTEFGoaeEDI5O6xpFFB0NS2HqlwNgzagGRehIWWLbRqaomG5WqrydbNssM4wDB3dcCT5HqGAbKHX+NpqvlsETF6UTt0RZxuazYJ/+B/6s7z33nss2oYUBqxJNG6hwrLBcbG4Ug5ACIQ44OLpJa8CvsYYyGZ0e40xZSJpR3YrXsueY8BklRS82e25vdvivWex3nB1pWK360drQgwYPJvVikXWfirGGFLMtK0amCzMFmNkuVrpgpaGw+HA/rDldrvjcDgQY2S9XuNa7f3Z9z277YH9fk9KRxaLBavLKxbtikXTsFysWZVmRJIiKQxkH5DGaigVgUGFjGLyxOhJ0ROD9iZNPpODqPcUMrnvSYcd8Xhg6XokdojNrNqsKmASaAq1nqShnMlWwesAg2jdSu2bS2lcVUfMmnY1lfkp6g3E8LB0/8n8vffUBHDms3RnmnkV5YnxNSIC6eFFb7Kc4BLnRw00J3/XKmryq1O+n3e8GcZCtD2eiBSAcaI5L0vq1FpLz9QPREROjIW1QkhhNBLTBRIWzYrGLVRDwbUsF5uRq5EkkrMlJgPZEUfhU6V3a2igu0Ct3kxJm/G8//77/NIv/RIXFxds72558enHWJOKKxvHGhY/6K7pvadxp7c5lUrOXFKNo9tanp+POdnMWa2d2e/33N7e4twtfd/z5MkTEpHVUhd1LShzVhdpW65zSFMvk6nnCKVATPUmKs5iYPQi4FAEZQoWkRKrRcvFesPFxYWWuBuDs1O/1iCqWZpipM9xvD+uKLGH6BWPin7EdaZa4ek61R8jWTMuJhWSmQ6DkI0UoecCNCbFEFJOIFYFcUXrimI+Pb/eNxVCrgVe6p1M87Smg0/vC2dzbgI5P8s4wUHGz3RODish9XjomW9Rvb5yrjALi16XRfk84/saCxH5z4B/Gvgk5/zz5bl/B/iXgU/LYf9Wzvl/KP/3F4F/CTV+/3rO+X/8vu9RSFkhBIbuOFZIigjr5XLkUSwWuuCnSTOBXllmaVZjZjdLWCyXtK1Sn+cSdzmnMbevC3G6werOmoms5SNhCCXrknjy7Cm/+Iu/yM///D/Ah9/7Dh8fDmy3W772zlN0g/CEs5DIe09s7xsLaxmNRR0555HFWv+ui7v+qPhLx+FwYBg8vuuJg2f38hZzdYkTw4BiF8ulKoS3rRqZ2E99Ya0YxCg3IGcNhKwxLNsF5kJYtnpvrm9e0ncenzLStKwXpZbHxdEQj2Fg8pAzvvXkCBTyHKVeJ4Sg4ZrRQq+kfpxybQo2EXLSMvycCDno32REEmI0tZoKDmERktQ+sDORYVSfNZK0crmCnzJxPgBi1vL3SCF1UYDK71srcnbPxscTZ+b0mHHWj6+ZG6OaAhU5D0VKer3yVM4+1jkD9avyJubjs3gW/znwHwO/cfb8f5hz/g/mT4jIzwH/HPBngK8B/7OI/Ex+WFJoHEbKLl8W5rz4SYHCuph1gsBMRaq058uSWCzasWBqyjroZHdtW+oBNKRISSdsP+xLpiFQJdSsCIEJT8g542NArBqPzfqSn/zmT/MLv/ALPH78mN/57d9id3tH3/csl8sCzlYBm0BTUpajYtNszElb8/HQzlT5FxWnePJkSYzqsRz2HVdXVzx58gQjhWhVsIrFeqUdyJIlkmmMNiLOUQu0pFxvawxxSEQfCN4TY8BKMRrLFW3bcjho9zFN2ZbdVDTsy7GUh4tgnJCzxfte+45AMRIen/SeGVe9mlNwLuZE7wcG35deHyrio9fVYysmI1FfK5rZyTkphpkzZEtUkgqQSZEis69eRcozDKte71L3kjOlE9k5rvF672K+UMco4IF7+CqgO+c8VUoXoHV8XQ1TCo38VXDmPaJXZm6hvtT4vsYi5/y/icg3P+P5fgX4r3LOPfD/isgfAP8I8H+87kVqGAze6+NqNACOaYrhYyFhTeCmIv8+BEXijYzA5Um44gTJiRx156jI+kjCSqotKXUhJe1wVjEPbVxkMBgOxyMffPD38/M///P89E9/wDAM7HY7bQZslXUaCq5Rd+lyHR9Mnc7rWc49i4e8ihqiqYdjtSHPlWIFV4+ueHL1mCdXl/zd735bOR5GQ7vdbkfKmbZtudpcjJNyJLVplE8OkRwiyat2hCkcCecca1NaEyDFEBaeiNHFSFlEZhQanpXcQ9m38yjB5w6Hcq8oNR4ZH5NyafzA0PeE2BVMqcfHQMypVPRoWlONRlJPIaknWa+Z8inm9R2VfVkPMyfXW9kdmp4Gc8KxuG8cHiZJTYu1nvt8ocrJc1P4+arXz85S5rzul6f/f95vRMuMZHr8FYwvg1n8ayLyLwD/F/Dnc84vga8Df2N2zHfKc/eGiPwq8KsA7UIb79QwIqU07oxDntiZo54kpzfPGEPwaSRUVe+kvk6zGnG0yiJTQ5amsaQkJcMyLdKaz7emIRlwNmnvChF+7ud+jl/4hV/kvffe4/d/93fY7XZ0XcdmvcSgxk6rJO2JjH51r+djzuWYx77nP6OxyEzehTgu1xvilWdr9trR/HhELi/42jvvMiRV9T70Hbv9vuzOHiPC0i1wSPEuCqAqU5/YpilAIJX7odemdE9VDyILi0LlDoSSkjY4qwSvSrDLAqSs7MqC/vsY2B1VeUzFc/R4HwL9EOj7nq7vCKFj8ApA+xDIRFUgK97EvNrTQOG91B9lh+ZkiMhkJequP1tEKWtxljaNqAYHOHk8/jl6GOdjXPSvCF/On6+Gor5urEXJ6QSAnZuGfP7hx/POvJFiXbKAYF/T5+yzjy9qLP4a8GvlI/0a8JeBf5GHgrT7plWfzPnXgV8H2Fxc5JEL0DSlkKykHefptFmxjx47VZ3iGTMV1VOp1GQNa2YNfKrOQtOwaIrydGCkkuekN8qaphSZgUjAh8R6dcE3f+qn+bEf/waXl5fc3Nxwc3Oj2YSlYiLOWFIB905SaGnS3qjjlH9xygKc/67fu1ZMGmNYtAuWS9XwjF7BzuuuR7zn537hz7BYr+iD56MXnzL4CTzsug7TClkMJCk8EhA3FXzlnEeAc055b5pGsaVSxFZL30V0aku5H+eFTTEHJZWh8zySyd4jMdPkRBY3Fr6FFNl3R7ruSIgdIR7p/UCMA2JyEeqZQgdroCrBQ1USq0bXkIoB12ZKqewZFknnS0hxhgmruC9U9PpQpCzYB0KM+vr5b/2/dGIsqi9aKmnGzxDPXmfGz1uub6miPjl3MRRfFRX8CxmLnPPH9bGI/CfAf1/+/A7wjdmhPwZ87/uer3xJ5xzNRqm7oxufZwzMseTYluyJ/u1DT9dP+EVKadypnHMsl8sTcLBtl2RUUWkhWnUavScMA5K1hD3azDAEbm52mv1oW1x7wU/9zM/wj/3j/wRP33rKx59+xG//9u8yHDuePH7MxWrN0HdAonWOQCLHScNiNFan1/JED/T8/0AxFF+OM02jQG+74GK9wYhl1S5YuiWffvopdzc3PP/wY34rRZ48e8rVk8e8/fgtfuz9ryHOcnt7y4ff+S7HQ8fglb9gxaiBW6toz5SRscgM++j7nqEI7Mzp5s6omlYfPc6o1xAH9WrcYmqeVD0TKOh+gQSMwJAiKfhRZLgLnj4FXQ/OYqWBVMIOE0mSMQWz0AUXyTFibUs0mRwSMRlVyUpCKszKJFltilUR5DriuGAL56HUDM3m+b17dz8MmYOWr1b+Pg9D6mtz1iwP1K6rE1/k7GVTxrUaNFsKH2fnTVmL1tIDhu+LjC9kLETk/Zzzh+XPfwb4rfL4vwP+CxH5KyjA+QHwNz/jOXVBV6IQheZbjEWMccQsqjfhnCn8BSm6DWbG+JuyEClpPxJl6RnIDSllcgrE1o3vrzhAiWtxeH/UcChknG25evyEn/77foZnz55hGsvhcORwOIyp34olRG/pS1xurQU7EaYeqguoBqMai/kONGlyKEg6iuOWa1SVpBprudxsFJxdLtmX0Ojm5ob3vv413vv611g3C+zVY5IPbG+3dPuDlpL7QEyJm9tbYt5MGaOciVlFi4dhYL/f6/Ejo1K/03rRalVsSgwhkn1WrgqRhSwmIV8RZWmK4MSRg+pk1lAlCyUrogYnQ2mh6JDYIjGccQ10MyGrToemStPMq5jS0XUh5VysUzpNN1TylHolJfNA0cWgmIEznOJVUECmZFz4DFmJucGZPzwBOEt4OPca5iSwsYXl9H6pvMb7WLCXL0/a+iyp0/8S+GXgmYh8B/i3gV8WkX8QtXXfAv4VgJzz3xGR/wb4bSAA/+r3y4RAze2XBZInQ2ELil6zG8d0oKakUoLeD0p4mi3AkeVWjEpGMx21AYQSX6a4PEav8m9GaBYLXGkoHEOvDM9mSRd7Ykw8fftdfuInvsliuR51B6qnIiI4K6wXS3ypjiVlFm1LNIyAamWk1jGlcU8rFWvmo+IFozE9q5MgQQ668y/bhZZvh0Dc+jEsO15d0e8PJB+4vLzk6+9/jePlgbu7O+7udtzeat+NEODlzc1o+DJqoKsMQO8HzSJY3fOSV4D5OHhyjkU/UtPYoTREGrwno+QzAfJYC1OAZ1GRnWym3VJ3xUJBb7SXCDGQvNWMSwH5ctIu95K190vKEcmmpEr13kesGqEa1jEDCWa6lTV1SqnL0XtSVNQ4zYRM8+yhMERn9Pzx5xm1Vy95kvzX95szU/O9s1a8iPK5a2ltjBHbuK+khP2zZEP++Qee/k9fc/xfAv7S5/kQIp1ZB0cAACAASURBVAVQy5kUToG9CVmXsR9mXUSmtOpTZmLEl36pWgQ2e4OUC9W4utfaH7NpVEFKTKZtF7TtkkW7ZL8/8vx4hx9i2ckjxlneffdd3v/6N/Q9cxgrNk2KrNrFuCOrkdO8v9LN9X1DCAxyaiyqFzV9tin7IzlrVetYzDalcufYghLUDK11mAzHkhGKJQIejh23z6/VCL77Dk+fPWOz2ZRwboVxDuMcx6Pn+fNPOA59CY1mn7VmqPLUl7UK6wxFsQtJGCdj5kNK9kZmfVPVwOk9cq0W20nW14oIkYxPkWwE6xxNA2KCsnlBsx5ZS9rJCclBiUw5TCmD8yxGsQ2psM7GbubnSy6bcW2fwqanIYecGZDp/s0ff36coBqoOuLsPc2JITqtMj39bJaUarMuS9tafIj3UvZfZLwhDM7ZF5Y4koNijJhCzqrgI0zsztV6fZZqnS5gSnaGU0B15cSAMAM4l0pNXixWNM1ilK27ubnBh6SaF2JZry545733ee+99/TzBG1Q1LgF2Q1cXl5ipIjLoGFDOOs5oWzG+zwLmOoSTjIgZbc4B0bnBoJCMkomjyXfV1dXDL4fPYvD3Za+6wghsL/bKh9ksaJdLrh49IjVZsM777zD9z78lLvdrR53PNB1h/H9QunIntLkDXmvYOnKtSQyxoBbKJ8lFe3UbKHNDSLtieaIGqpSO1LqOmo/1phrqClaTCmqzRGJhJRoapiRtDE1xFk+tAKdk4Aw1GtaKfT3u9nnXB17M1u0ZpaSnIOU83CkuhrTedRY3QczP8t4UOymeDgpZ+3Ze5YlIxvEKYg/D3WtVXX23XaP9z+EMOSHM2SqxlM640kmoV64OXsRGFOl812k/tTdz5ipaEzMlHZcLBas2gWXl5eslhvImaHvud3uuL5+WUKGgDGRpl1ydXXF+++/z1vP3tb4PCSq4lQcSsZlNqG01H4KqeY3eD7UyFVMYsqOiMxEbCrYO8M3YtRqVinnb63gnfIlvGTW67UyXwev4jRdD8B+t+PTjz9hsVyxubxgc3lFu1zQLFqePHvKN7JnGAZubm44HHYMw8Bxt1cQuBR2jT1OSwOj5x9/wvF4JElitVrRLhuc0+rRp8/eGq+/oxkNRdM0NMuFpmFLtegoMVBCBOO0N4wS5s40O2q9d93d5TwLkQqoqQzQuojrqGDm9Lf2gLW5sELRTMtDmY3XGYDzOft9MYvzc1MzdlA3kZN0LareJTUUySBGmZ0qjqRcllqCfzgcCmj8J8izqAVVOEcwqVQpptG1N8awXq+BafENQ38Chlaqt3OOvj9Sy7GttZgxn+9K16qGxliWyyWNc2y3W148f8nt7Zab213R+1QxXBFhs9nw9tvvcnFxQQwJRLGU1WqF73RRLVpzgkGMuIOdYQxnIxb5Ov1Op+y+hyZlStpJvRoQayzG6YQyxhBNwB8H/V7W4a3ThZw0lLIIx+NRZfDIxCwsg9ZzLNcbvvmTPwk5c3d3R98f2e12fPrpp2p4MwxDKEJBPYe9Us0P252Cn3Eo2qYNtlWKedO2NG2LaxqapsUgI52/Er5MUi9qDOFm2SOMht8V+qqGAWOQPDVD4uxanfNU7pGcCi4y/3u+wOvpxurT+T154P2m8xRD9Aq5bbln1Kb3B134AJiJ7zFtlrWtROIE/jSGcCaBUNfI3d0d2+32T46xMGJ4vH5UhG4igx1KEx11BauXsGg3hU1Zd1g1KEMc6LoDPvSlICliC9FLROtLFo124F4sllxstE4ihswf//Efs73RC3o89qWc2ICJtAvFUR5dbfjmT36Dn/rx98m+Y9k+QlLL5mLFW2+9RRwONI3qWXTbHTYa2tBgbEuDY28s2h3NEs/k1g5lYSNWGyORiSFgROglF/3RFolKKnPW0hgLxmkvUin8RAsRT8gBt2wwrUWiei7r1SW1BLuWqIOQtp7bm0/4pChQSbvg2bNnLFetdofHYpoly2dvj95B33Vst1tub7aYwSPOsFoJrbtks9nw5NEVq4sNm82G5WZNs16qi1yzOsUYWITVUunVoddamsNxT7/fMvQ7Li8XrDZLIonb2x2fvNxyc/uSlBJPHy9YrBLWRlojNK6lEYP02jqAPKjuhlgyLSm1xKSeJRFyKTiccZ5IrgCto/sRgTgCnCdhR93hz4z/3NjkV6QqFRe9j3+M71qrVdMUPtXjZKbbkmUSgTbZ4KQtWEWVJITDoePjT67Z7Q6k+PnCoYfGG2EsaupRqb9qAaVoSYCZ+oTIFPMq0FlSSskRwkCu/S1IRYFKd/bLzYZF0xbNTfAh0Xee4/HI8+cvuL29xXfKz2gWpVFxzmOn7eVyyeXl5ejZ1G5o7WLB5dUjtjdLrNGQpw/aRUs9HIuR15cI19RuJTjV63E+VIrfjKQvM8+ilO3spHKyCMZa2yALi0gR9PF+pDEPMRBCGsv6/XaPHwbathbbFQ5IVKwo5czxeOTu7o7dbsfh0KkcQIZVu2Cz1F6j68WycEFalus1sbyfMdpWcgSoTcnWDD2744F9d+Q49PS959mzt1guFnT9nr733N1sefHimpgCJm/YeMtymaDJOFptfC0K8ElKJ+IzCno73a0L2JzNqbhQKn1DKkZRKdVJ4kl4W6/568IRnaN2vO/nYfKrlN7P18Sr3kPODJiGrFa5FklTytFHDn1Xrqk/ExD+YuONMRY1XGiaIpXHBBIpTmERUXXr2pPTNQWfMLqgXXBoybIai6YI/64XSwRGCbjj8aB6Ddsd2+1OSV9G8/l1YqWciGiOWoldK42xi+HyQTMqV48v+fSjhWo2kEupvGCaSXFLOFWnmo956fXJzpQzrmRDsPUaTRR2EZl4AbPJK6JpyD4NSuUuamJtZbJaQzcEfOwLq1FwTaO/bQYf6b2yMxOx1M8MZRH3dH1f9E/DCKRdXVzSNg0XFxesVysWbcvCNbNmyVMq2zpHW/RSw9Bz7Dr2uwPbO9XNCF7v22Kh5LDjsePm5o6bmztub3fkDNYkBm/YrC1hZSFZpM20GExOhKwamykBEVKUieRUVdDNaefxXBXKSiPuGg44O83P+cKt2NH879mMhlfgHfePPf1/k6b3OTcTZsZCzmgWT/kXppQqKNjpw1CM+o5hCAQfeSAC/tzjjTAWwJjaMUYnmCpi1R1JJ3zjFjPdzOk1kYxzJWuSIEbFSStott1uCd6Pik6Hw17LuruhyO/VANUQYsA5Q0XFBcHWJr+tVrV2fkBSYr1ec3V1VdKciRA8pnE0KJ+AXLn5p30vz8ercIrRCFAMZvGs1EhMClhSjq3CORWYq1XSVcjFGME1LdkHQlGeykYwjcMItChoPJSy/Rg9fdCqz94PbA97ff5sZ3y03qhHsV4X8d8GV3CKtm1JZpL2G1sqAjvv2R2P7I8HDl2vXd3aRkV2mhX7wy0vXt5y/eIld3c7jgctOLvbDngPfQ9haJBosKsG2zpyNqphkYSUhCEoMemYNPwyYaKozzGLbkiliVEROqrGwmhqv/J7Rm8ulU73o4GfjIC+Np5co/k9feg+P/T7/HWvOlfOGe9DyZxF+s6PoeLx2KsQU7L3zvl5xxthLGrhWAiBtl2WiaVIeAX/nG0xrVEh2LKrDX4/Mx4l3RryqFFR063dfkfwvjTY6UdKOEao/U9rOq3yNrTvRKklKAuzbVuwhmEYWLaG1cWGi0ePcG2DP6rK08Y5JS4ZQ5y9z6uMxSmodipGY1BG6wj8Fen5es1iUb8CIKYxa0Cobraqb+l/qxUV47Q83QiIwZb3zAL4knWIiRSiNhQKg5K+MkjSBcUsnZtzprGORdPSWDdRlEs6O5dQUDMbpVo2q6Hves/h2LPvAyFpQ6mLiwsuLzdghf3Rc3uz5257pOu10M8YGIbCm8ggOeAk4Ii00mhbBGlIkvAh0h0j+z6zD72yRWs4YfJIwwc47PtZtk29DyeGMPPY5pyYyZubCFp5JG5NhuV8oxizWieToPzOebxf8w2kcjjm/xQXKZ63VHBcyYrDEDjsO3a7A0MfsNYx52980fFGGIv5hazeQu3J4IpKthHtzA2TZ9FKq+m7odeioxDGblu73Q4ftM6gPxxVOLfcqFTUmE0pXjKjMnLNrDgy2qxHgpAiowZm/ZzGOIyzLNcbLq8e8aI/qkpT2f3bxYJBhKHritHJ1M5n8zHHLPS9J2NRr81YDIcphq3Qw31Q/MIYJGkneD3pnOxVxZBVv9L3XaHIV6UsSsiXsWPV7yQGZIuC+uA9OQZ8mgrLKNTp9XLFarGkbQqXwjmatoVm1vjIzPRJBjXchyFyGCL9EBDXcHlxyeXlJW3bst3dcnu35/Zuz+HoiVE7pKdsCLFUsOoHR2JP8o5WHI0TxGaGmDgcAte3ge0+sR2K9pbMRITctIBubvfl2utmYYs0gbH+JAyZG/waWs1DlPHcdvr7/s/pvJ/OKUiaewz1uMrq1PoWpHJy6u1Wwx9iousGtrsD2/2BYzeor5ngdX1MPut4I4yFc4633nqLruvwvqC5xo0WGygCsVv63vPy5Uuur6/ph51WUfqhaEGmMcU27riFQCsjTTyPKaiUJ6XvCqaCItLG2JI20xjWp0zXe5pFS7tYIVYIMXPx6BE/9uPfZOiOHO7AFK2FpmmU8+ADttEK1Ha5wLhTd7AbepqcsI0Dr266ccppkDxhGmJUHbsW03V9j0mZLEW0t/auSBkpximG0sZxsSyGNJTf/RimpL7yJXpyyKzaBdI6rBVMEEXRk2L72bWa0iaBmSp6aypa06YL1hcb7KIlGLBNA0bG8nSfIrv9juvraz69vSMMgeSWmkl59nYR2DnwW7/3h3zrW99SRunxSAiGyArJQj94BM9eoN3BtvE8Wh/I3rFaG3BwHHqudwMffdrxycvM0W/VG6FkPg3Tjg787b/zB1PPWyx29CbSyaKe/8wB6WowxlqextwzMpWXAxPfZ6T0j+8dxw1jAvZP378+rvPcOYfvBo7HPTc3N7y8eTG2czC2Yei1veSXXqdf+gxf0ahuVy19TlmLf9SABPb7PS+vb8f6iq7ryGjqtJJudBfWm6HgU9WxPFWjmkue5VHnshR7xYyMO7su0CEG/KAVrWSjhWHGkI3g2pb1xYblekN3PGJiBFNSZ6aU3M8Yf+ehyLxE/R5QWZzVlHNh9pUKwurKFhIOqEdtChXapNLasKm7+kRmG4FWBTr0WodICsqcTKVTuWpDRO3ZKVr56oxFbBq1KY3oDmwbd/KD1Wtka8WjVEOdRrEgrUVJuFYxjov1BtNoU6a7uzs++vATPvn4OS/vbk/i9UQi4vRK5EgQ8EDfJbb7jojFLQxdTAxB6KNiWHOaQRZUL2d2K4bieRgi4BUYzmf8Dk4X7HxO3fMezEQirGPOBZrfi/m5G/ewsTg3TvPnnHOkMJRru+V4UH3UnCj4W2mGfU/m9/ONN8JYeO/56KOP6Pue/V6LsHwhZR2P/bgb7nb7E4CzglBITS3qTRKRInhTG75UgksBAAVVgK43HaMLEFXXtrPnUmJslnPsB5QZJ+PObaxltblkffGIu5uXSpZJEw7StktM6sfveg5eTfJ797Mi9fgpfi2Lu4RRKas6lHJHBWyhgIN2KC80YUFDLucm0Hf8SbMUYwFDMTLNK9HrppPztCZFJ7yGa8ZppiUbIUop7LRCyAlT4uXee7Z3d2PhGk3LatGyXq9ZLtcQEzc3N3z88cd8/PHHXF9fc+g7nCu1QyWrkkTrZkQofAcYep0rxjpao7hRSpCyJeYwxvcVMNZ5MF3nqGJbxJHoeb6w8tnvCfKY39K5AVI8Y/63nPakrZvCDJ8w+BNDcO6xnP+M7FhJxOjHNHgM+vly2XS/ivFGGIu+7/mjP/oj1ZI8dOoWF4BSEd7p2Ao4jvRwyoSJ93dn3YznKaxiwbNhvOm1eChLKfiak2nUeFSgtO98aTqcyAFSGrAZFqsV64sNzmkXeBGIKZaGPA0GP55xZKqWMReXqXUg8zRrFayVSkGexbsicuJKa0EWGm9ji3aDkI3iETVtWHGheh1todjXc8ao23HFR5DSS9Po6qwpvDqZszUo5yeTcyrtB/V1KSVtcxgj+/2em5cv2e12RB9YbzZsVguWi4YUe27utnz04ff47ne+x257S8oBZ6brNH5Poxoc1gg2R0hKdQ4hE6PS7GuImZIKAdfQUxdvOqk4hbLxpBmeMAKN9yuap8k4wxc4xRkeHpkYIsY8nNnQNGj1ZLj325wB5fWxc47GTanUJIAtVTIxat+c132szzjeGGPx7W9/G5gorWlmbUdqc2Gm1fRWbWbLK1xDfaJiEWeS6CKaATEFyRbG48imFEwpuJRSpu819BGU+ZlFtSRbZ2nbls3mksVqrRkEk5BkyKLpU+fcPeLV+PHyVDRXb3wFOOP8/6yZzJgRpJDVkCIPn3ShZqARO4nMiFZ11grUXAvXoHRgt0jbkpwDa8kxEmMgJl8KtdRri6KZDZAiwz+5yql4FMmKOiUCtryfD4EhBo7HI9ubW+5ub4mDp7GOy9WCdesgBba3t3z80Ud899vf4cPvfY/+uKNxGurEoP1kQaUMDBoqNaJelUkZm0FSJodIDJDEQkrKaowULZOaWlbPSWaU7JQovXHvF5nN75W+/ovH/yknUlV8O2NSvO68Ou91w9DPMn8+sliU0ghXDYp6xX6IJ4D5lxlvhLHIWRe+7lSpVMtNKUJTUqhV/SqVSVAZmarrWBlvduZhzHYFlNmpxqWkJmcA6liVOuMAS+kdEkKZ7NsdMSZ16yzEUECrxYrles1qtWK/25aFrKsm5zT2z3ioNmTOSK2KWdW1rEIwIUWyV0zCGIOtrqm1ugBiTWMqKBqNMjarYdJwBUJO+CFos+fyUUSk0MctYh0xD3ipndFkDDWMs5iond2lZjlcaRhUStCdc8rZcKoiTlJ25uGg2hm72zv6rmPhlHTV2Ez0R2XSfvIxH3/4XZ5/8l1ur18Qw0DTWBU0yol6K4WMpKheBQmblU7VOGHpjOoMVZyhhBzj7owtRWLFaMx7J+ZSlVpCPVPmQXrtAn54g3qVsTkfo79bN7ucRw4LnHkXopIH9f3ymA1S7VAXwVqlz9eSiBpK6Vr4TB/pteONMBbWGi4uLgoAVtiBeQIl52rdwFjxOBqUWOO+6WKqu18MBFCrEyvgV0e17mPc+ABoVXt6brfa/SvRsrAtPkYwFicZ5xraZslt2aGapkVswg8Dzk3vce5ZzI0FnAr41lGfM6Lfqxo5Ed1ls9SmegqKeu8JXl3tXBq6ptm1GWPixEkHdkp5fVsMRyoKVPVz0hRtTVeaNmuzVayowbZtg2sbkiiPwofEvjtwt71jt9UyeSMyErhif2Rf1Lw+/vBDrj95TrfbkUPPqlEdECFhGkvjCgCbNBWci/6yMbBwjs3SsVk7bBtIRlW2xOgMsILiKTkXGvccE6oPZuDhCQbx6oX/Oibm5xnz483c2yhztupxMBqLs3Cn1DJhqteXyVFng3GZGBJfQeb0zTAWKWe64ag30xTG5Az8GZHwmdV1zhGqIEqqC0D/rBkQ/Vuw5pS3MArUikBltqXimhtLignXKjJvW1Xpur6+5vnHH7K7fcl7bz1RUFEactDfbbPmydN3+N63v4WxGZaqaxl6j8tGqxAdJ0Qg0L9jzjgEiZnQDcQsNFlwbkEsu7OCWYoh5JhZNI0Cl8aowRMgW1LIpNgTvIZMFZOoHldTsIZsDSFDSJlQCvKir4bWsGxaggSGkIgxFAKbKjEJWvMSM6SQCKuEWWT6NnIk40Ni6D0+Jra3O7pDR45wsdmwWTUs2wZjA9/9g9/n+Scfsb2+4bjbMhx2LELkaQN+AX2EIIAkQs70gxKynIBJuj4a41g3jqu14/GjhJiEF0s8QuwC0VcP8Yxqf+55jhYilwxZurd5/DDGPU9mNv9PkdTJkGnGaQHGgWkUvDKBFHukqSX/BvpT4aXPO94IY6E7vxk9gNGKjmGCjMfVG/jV4Lv3xznltk4yX+jilWlau5VFMs5aLi4u6C4udHFiFVCkeBK5yvine5+7GsBs8rhzKDCXxu87gl9zULe4liklxSyyIc87ijmHMVW5a+qDWXfXigHNAWHVJVUBGim4kYhmO1KMJ6CgaiboHIxZwyexhoTBB0/fe7pBmyfnnGlbx3q1pG0EH3r67YEXL15wd3fHUDYKJa1FUobGWbAJh6g8f8wkmzAtDJ5SVXqayjTGkI0rnsGUNVNdzYdChYfl/H8Ux3madu5pa7Nxy2H/J8BYVOLTKReiPj/HFQDmwqRf7E5nYXQ18/nZC+o/r39IKdJ1R25ubrSIKifsjGtvrWW9vuCiGovy+UJUJqQVSxZDEvNgw5dUFqhSqfWAkFQyLhLHwjqT8+heiyj4R1b2pjpRtZCsdBhzjqZZjABXZYtWjEPQrIk2IY+4jFbv5kwInpC0xSFStGaoknnF4AiIUSGWirnErGnm/eHA8dABhuVywapxLBpDDB031y+4fvmc588/od/vMCnjnGClxQAmBg1+SotCooK3rSl4dRHGMokCyAopFYavrcYva31ILKK9Y2HX1PbyR8VQzL3rOuZ/T4SuqS3nuAlknQfneh5fZLwhxgKqYTg3GDUFOk8XjRfvSygWT9kPNRhjLVlOWCmFbKLszhhzUcq+43DoRost2MKLMDhnlMloNWc1UdeVzZfLLn7uZv7Ff+8/+sLf4U9HGVu06+4ffbbDv7zA3Js4pj4pqhg0bbRGNHv2ZceXP8NXNbIZf2Tse1Uo19nc+10BqS/9tg/FM4YxzVbBRx8Du+2e7XZbdtE8Aq29116fi8WKRbsCUMKWcWN3eFdTjfLmXPI/HT864xw0Pd1UqwzlaYZHmIrizoH1LzLekJlbuRAqGlIfw1RNVx/Pn/+iQyVdzdiRuvasqD/1mJFhJ5qWPB6P3N7cjWlaUD6GCuNqpmKxXhFjHsWFndMY2qAGwxjDb/yVf/cLf/Y/HV/9kB8RAz5nep7/HeOkW8sDRuLzZmgeGm9MGDLPWZ9fkIeO+XJjloY9B5pF294rH0MrEUABpOPxyPX1NZUl56q+RFRi2cI5rq6ecPviOcMQaXLDXOXZYsAogPnX//KvqQZmVDn9/fFY+m6gmhhNQ7NQzKFpmrGXaxXMXTYLHq0ucaYZpfZsqZ61iZER6ooIjTHqjg6DFhzlHLU4LFeBm0Dqo9Laj3t8GFSSPxcqOsoEnIdssRjNYw4McRg/v9aFaKHZ7fUtL6+fc/P8Y25vXjB0O6zJNK3lsoFGtD+GTQmT8hhahgKoZiNjLD5NipYYE/0Q6PwAkmlbw5O3V7jWYtySgxeeX/d8+OmBm23gZThNG1fq+I/imIPv9W81FA3Kjambq5twqj8pqdM8lzMrlOKRa1DAQq1vMKcU589wr8/Tr/Wc9fFYMyDTZIo54KzFuQY/dFgDbWM5HA783u/9Hl1/ZL15i9APLJZL/KCtAJfLlp/64AMg8dH3vkN/PLA7dlwt25GhSdIQx4rgxBCLwfExIjGMnb2OfcfRZxaLgcuLK4wztNJqqXnQStsw3LBerFk0LYM4rNVeJktxmgJOaVbyr02QB9+Tg7L6rBNyttOEMgoMtm0LkslDJqaIWKvl8AtNI2cMPgb2exUqvstaz9AuG8RZ/HEghAN3dzv+8Pf/H7Yvr0mxp7XgbMRYQ/KZaDK2CNPagv3U+2RzBlOTYrGUjLsS0kWyWEJ0Km6TYkE7B8gNpIF1u+TttzYcu0B3GGhxY7uILDJ2XDdG6fvjfJktKlMA3R/ueMjLedWnmG2qGMXZyOSkHq+uoaqp8eU/2RthLOA+4jsHO88Lq76yIXZKx1JRZai075yrBoai6F1/5HDcj3UK2UxZgKZ1hBRZX17w9Nk77Pf70smrLx28tLqzvo8kpf5aY0rtgsGUzAYouzTmoGI+3mtWwyiQGjP40imsNi1yJuJoVQaQade0aSamElUwRzMEgVRSqN5rRW0uxXvza17l/60tWhRFfKgf+oLXeLIVTFEX84OGa/vjgZvr27HDvKC1MgJYSUg25BRIWEyapWKL0Y6Fvi0y59AUtSspdRBkXGYkjkkM2GxRemrGmsyqFZYLyLswpr5MHjmcr5hPP1oeh8gpcXEqSoSaPZSv4Cu9QcZCJfE1ftS06CiuOuMWnIYi1QqfC6jOzWjxnU9Ye1XFqMyfMT07b/hTL3jAikBKdN2B/X5L3x+JUYvDIlq3kUXwIbFZX/DWu29zOO449gf6l55DN2CMYdkudbdKk0iucjCExjQqIyiq/QDq7cSooYHBYkvDpRqLDmngOBzxKeLE4JxK8dvmgtqBXqXk/KiNAZBiQJLgYjEWwRfhXk+ahRLiLNp7UdPJuYjvHPuOQ9fR9171Oi5X5JTZFyOx36uor8rhbUlDxKmeLJK1biSaiScSEWUbltRwLfiqSgKC6nZUyo0I2o2uptDFkLM2HJKccNX7dJaL9YLNeg+7qT2wigXFcTGNO3Q2VRTgC87iH9QoNUuzUWlI8+rTubGorF8RwVnzlWRD3gxjcYZTzA3COU5x8ruGGF/irfX81UBNIUvOGVKAolNZO3V33YHjcc8wdIXw1NK0RftAQJzl0dVjnr33PvvjgSFEhu3LUZtSQ5FJrWkYhnJD7YzmncgF48g5E4bIIIOSrGYVnxoyJQgDUWzhf0RsmLwJyXVCWUytjSky89Goox0ShLK711i+am0mowX7gQzBcxh6tvuj6nTmRJRM6xzd8cChO3J3t2W/33P9QgWKhj7gmOocYlT7E3wktRTtDwCld+cSpinOPWl6YERbJRjUcJTvYozgtE+X9sUVQ2OEZLSo7WKz5HKzpDFdWTyM3oqRGVXrLLv2gyL9fZVjpO0b7bpX520u80i5NBZpqkTDlxtvhrEYsyH1N6hnIbPH09G6oGoKdaLpTrf4zLO499x06SUVjQAAIABJREFUnoe4/3OPwxgpJd+iO3m359jtGWLPwq7IJmnbw1KhmcTQrJe89c7bHLojfQzc9UeMdfiku6dkra5dNnZscWhFS5dNZrzZ2TjFc0IkDJ6BfmqkJIZgpeTVdYGFlIg58KLrWK83WJk6oZmiMSq5Vm5qAZKIMiQjGZwl+KT9S4eBWOT1cvHOjv3Aru/Z9UdSzljrSKICRbd3W3wYOHRHDseO2+0d+72W8GdLASkzIlrEVqvfU5YZMdQokJrANjI6hFEAScRZ2BjL/XbGjHuuNdCKxZpGSXDWsVnB5cUS51SlPOYHQtmvKA3/wxzqleVRs0LV1DIkM5LkdLNQYPxPjmcBPGQsJgDnPMyo3oX6pRWs+qzGwhQgSHdZIRdMYnyFZKwUVXGmndz7I7vdlkNRuW7bSIymtI0LYCwxZ1rbsL644MnTp3TDQPf8+Sg0I6ZM+JTISY9VvQqDFS1K029ewMXyPb2PiHgsghSXU6tZ81itWnubOlnQpgXiWlLOeD8Qg16zxioACiBloSqPRD2nIQb66AlZl6OxyjodhoHt8cDheKTzHrGWTKaPgXDwXF9fk8js9/uihHUgaBeDkY2bxRTpOkrNSsAaO2pTGBQAThJJWUgyLwLUcMSTSvakKHGj+h1SmLKSTdHRUq+kbVo2mzXLtnSVD6WnSpkylfT35oxJDvJ8PERajDGTC7U9FY9RmDwLdQgj8hWAFm+QsZjGvB7ioXGvKOgLjBo2zN/z5HHWvqGjGleOEBP7w7aAl1N/zoqyxxiJTkvBnTFcPHrEOzmR7l7y4sULjrdbmoVWjYao6tnOOSQq5pDEkIt+po9VCg2IpeXB4BkyY2sCHdrfxMdIX3qPLpzh7rDHOW0AVBsamwwYwdHo9ylfOcZI9B6fe3zfE0LUik8jhByJIbI77Lnbbel9oI9BXf2sjWx8SOyPB1YrbYMYEWIE51C3gtLDAwVo20Y1PmtjJil0f1UaaHBGGHIYfUURZV3mnFTJGq1+NUX6LlVt0phAYvldBIcbYb1acHG5Li0OOqocpd7yuUf6ozUqbmGtFIOh2ivkqXL5devo8443w1gI975Q/ft1ufCqOZlrvqt6HvPQQrSEez4f5oSrcaKV9zNGtTUWzaSSpfiAaltIyrx4ec1+f+Cdd9/jbn8Al1Rot2nog8dkp9JyiwuevX/Jk3fe4tvf+mP+9v/+NzncbFk7x6PlGtc05BDp+8DSOKwxHIaeICqCE30pDXeli3xIDGEgZ82wVFEd4yyryw3teknf99ze7Pnu9XNqBzPlamjHN5czq8KfIEdEVE1JGwl5YhhUqaxXxbK+7/GhZD4GzZbYpiWYTN/1HI+eHHsuL6/45k//FBebR/zu7/8ed9sjx+OelCO2MeTW4nPCNS3NZlnqTHqGAjJ6hKaI6uRsENqJc1EMmzMOZwzeZbAOcU7vS0wapvmEiY6mBxsS1iSaGHmM8OxqpSrgsWffa/5ElTAqsK0z480xG/dBzZNSdsOY/taq4iL0M8PwtCSiGNCv4BO9GcZi9k3mXsMJ2PjQyx4wMOfp11f933gMjM1maiXn/PixDDhC27YqDXf9UhsCHw5jJWjtIWpySZFaivKStmZ8+vQpT5484TYk8CoZaI1VaX0pbrkIC9eMgje1x2tNhdlCGMs5Q0wEwnh9vNfsjLWWy8tLOq+4gyp3R4zpsFab/vRGyDkW3WHV6xh67fMaw1D6qxx1AQ4DIQ5qtGd9S9RbUY9nuWx59OgxH3zwAUYc3/ned/WalQTGaPiBkCJDH0AS60WplsSAWCJmpmgey73QDBUma/ovCs7Uzm+qZlYl/KPvJ3c8Z4IEQsqlwbV+Dj02EhMK9H4VBIQfyPiMYcNZn5FcMkrqkcmDc/6LjjfDWJTxKj7F5zEYD53r/NiTV5x1yda0qoJHKlBrRoZcu1yw3x95/vw5+/2e4/HIZnOJKyrXTgxZNJNgx25VCefgyZMnPH37Gf7QsX95y647smpaXBG8FTJOhOQcTU5a1Vm6qlXPR0QgarNedTO1DUCO84VgWV20PAqXHI8d3XEoKU79GQYtGZcUdVcSw1BaE8acIOWx30ouVbMKpqlcAjADzxRg22w2vP/++/zsz/4sL2/uxnDEGAMlRelDhHk1pAh9Y3Biizygw5bUbAqJGDW8qNkhALHl+4ZE9InlYkGDUwVrG4vMIpAtCa9d1zDaLqJzyiV5gLvzozbqR58MBCeUg3qQEZWNNON3/RNRon6aLj33Al4Xc72udPezv+9D56ihiYXS89N67Z364sUL9tudCs2UXPbY7FeM8gCquGoW/OBZLRreevaMw92O43bH9u6A957L1VqZSKVS1WZojcU5IZdzRxNprFNOhwgSI0OeRGuIcvIZovcsl8vSM3TgcOwZhjB6QHHwSErkkAmAL5yPoTR0jsEXdF1oCmtSRAhpkgbMMumFPn36lPe+/jXeffddbm63pbcIuLYl+l5l8YoWv8oSqnbFMVhsNrikcnhjOXo09ENPDp6a+AK9FdYmJGRioz09lo1mWkBDxCQJTyAmQ+8jMQk+ZY7HSN8PDEMiJkro+vq58v8P7vnZPIrKUQEQccxbFpy0GihY7leR7/m+xkJEvgH8BvAe+k1+Pef8V0XkLeC/Br4JfAv4Z3POL0VX2l8F/ingAPy5nPPf+j5vMrn7M0m5udjLKz7bK/9+nfExMpdhB21deKZ9OAtH6s9ut+Pq6oq7lze8fPmSEAeGrmfZLog+QMo0Tj2MtmlxVrGGlD0pweO3ntIfj+xu77Tvan8kkVm6htZZZW+mjMuCGIcXDS2cYSxGo8jJOQODD0oTF8G1jWYzho6IsGhXONeAGMQY2jaWrIontoPStqNmT1LjWEA5RyYaS0wK4FqZJiB+vjMZalvGr3/96/z4j/84m82mNJ4+TvfAGjVKlWgVIUukRbjttam1SNY6G7QZQ46JoZ818y1AXlN62HaofV1FrT4eF4615KA6lkPMdCEp2zUJISbtGh/rcjQFH3ntzHzjhswmZ/3eMWrWrGJrlW2rnt0PF+AMwJ/POf8tEbkE/m8R+Z+APwf8Lznnf19E/gLwF4B/E/gngQ/Kzz8K/LXy+7VjJJRUXoC537X6da+d/56fb/76BzGLalROXpeKxZi0PY0x+K5nuVyy3W41u7E/sHDL0cIbBGk0m1ENkgoOq3u9XK958vRtdl/bsu+O3F2/ZNdr28WnV48xBKIG11iExmohkKf0BTEGV65Pqtcnq6JV9IGEYhfZ2AJuxrGJUhXAsbYlOasehq/9VTT8qZkdZVnODXjAxzB6L6eduBxvv/cu77zzDhntVN+Vkv3aO0WbQ0fEaOPe4CER8D3YAk5rc8aivVDJRPW+R43DgwGXBZczxiRWPtINSV9X7tGQPYNXQ9GFTMiGQKmBSdr0KHOaCftRHBO2pqrfzroxnd40pVucmXrSyldgL76vscg5fwh8WB5vReR3gK8DvwL8cjnsrwP/K2osfgX4jawr9W+IyGMReb+c57XjHNw8f+6LjM/8+myoBHo1Dupqh9LQR1yDtdqc9+5uy/OPP+H6+ponj58SfcA0DblI0099QJTCbUXZkbZxbK4e8bVvfhOM8L2/+x2ef/Tx2DRITOlZ6gOpKnznhFNJKjUZM39y4ZSgVZsyhVrbYaDniPeqkBSzEqH0WmhBWcphnEiVAFfDFHLWnp+2go2m4CNmZKGKSAlzFrz99tsqK9h19H2vYsFoLw+EUqSn8gMB7ZRlkiGURjjKuUqF/KaktbaxRWE7EfKgqdhCxYkOMo4+Zg5dD8mydCpWmxjooucwJLpAMbSOIWoPlhp0ZjRRMI9E5vbjzXI4zkMT9cZy5Z8Uo62hh0P7BNuRTDdqtH7J8bkwCxH5JvBngf8TeLcagJzzhyLyTjns68C3Zy/7TnnutcbinOJdd6a51/BZPIX5/7/quXOPZXweizGqT7FYLHRHHTQrsb5YkXNmu93SdwO/+Zu/yU/8xE/wwU99wNB15BhZr9dUinVO02eMMdM0iiesL1suHj/irXfe5r0f+wZ//Id/wM3za3Yff0prtAfJ0QdCP5BMpSULDVq3EK0KAbcujy0GfNSWjsdS3BUTHO92uotmDYVy0nJvbSCUxu9+omRtMuvlasruiGGxbEhZMz3L5RJrLb5gIo8ePeLtt9/mg5/5WXIWnj9/TjcENRrek1IeM01IwWBMg7SorL1tGBv25owvWQyTE4PX7uzGaqm1SMS2C5brNU+fXbBeNdAfudle83Lbc7la8uzpE5xpEDnig9bM+GwZYsYHKTomNUFawhDyKyzDq8lRP7xx/72neS8FG9P5rBmvXFpqhPth+A/Ds6hDRC6A/xb4N3LOd69ZqA/9x72PKiK/Cvyq/mE+9+L/omj293uP+jZVeag+H3zEGjd6DbvdjufPrzkej6zX6xFrSUljbiV2qZxZtfzaZV3Vo9vlgtVmw5O3nxF94OZ7HyIx4Yp+BcayGwZ1JxFqA77G2FFqf9E0ZOdoUkNTq0KbwLH3GpYkjdklU5oZg8WRC8MvV8B0XM/C5eWF4jOHPTFkFosF6/UT/r/23i1Wkiw7z/vW3nHJy7nVtbu6ukrT3cPhXEGxqRnInLEIkBxbnBfaDwbkB5m2CVEPFGzD9gNFvRDQi21YMm3YEDAGBUi2YEKwZGhASLIuJE1bnhlqyO6Zmgtnurq7erq7um7nnDrXzIyIvbcf1t6RkVl5LnXprtPjswqFzJMZEbkjYsfaa/1rrX8VvZKtrS2MzVnqDbh48SLPPHuB8+fPU5Z99vf3IxO4m2nj0IXWAsTVMFIlNm6qTFLEB+X7SD1cczKSOeUxuCBU3mMmNW5SUTkwYrVJUt5DvIGswZYeazSXwlU1ftTgI16RiAl0jB+8DXG4tXu0cpp9VtSa8EzB9u73H7iyEJEcVRR/L4TwD+PHt5N7ISKXgDvx83eAK53dnwduzh8zhPBl4MsAxuYhfnboOI5SKMc4D4C2VFpYwMcYzAywam2OMWqOp1XV5hk7Ozu8/fbbbG5utlGBxFnhUjZn4rBIdRmd4xqb0xv0OXPuAvVozFsCtfcMrEGKTDtrVXF/I9ptK4bBjAhkWWvmG2PI2vRvR24rzclwjsZPO7r5GOFxMc8jxHElfML5GiuBrOyRZRnjakJm87bze+r3UZYlly5d4sqVK5w5cwZMxqROJDqujXikepB517J7P1tLLHW5DyG6W5nmfQTfaplQNwSZsLkdyI0nNFrot9QryfrLLJ89TzaaUEtJLXv4yiFNYFx7GlfTdH4+9VE5HLx4MDHqacqiHKQEPjs3bUmZZHptPyCAM0Y3fgv4Xgjhb3a++grwS8B/FV//UefzvyIiv40Cm1vHwSseVR43Xm5FaOYms4koeWoELDJtIehibsN4PObmzXe4ffs2y8vL9Ho9VSSxetQF5e0sigJfR5A03uy2n6lV0743GGCLHGk8ZNp2r/YVvbKMoGAsstATBtTCaKqmJW4REYosgyzDkmOxVKkfiPdt/YByYIBz04mnae1KVei9B6/jVsxkSvx69sIFLly4wGAw4OrVq1y4cIGiKLi/u0NdKzlxG80KWgmJTz3AppZGmrva9yz50937aMGq9dEQ2xN4j3Xak8S5SawlaSitIS8stZSMGkMVLI3NIetjfY0DbBbwfjS1FNs+IvrX/K+/32yTTxqDE4nNpjoBgrSNf0KKAo5nWXwe+IvANRF5NX7266iS+Psi8svAD4F/L373j9Gw6XU0dPofHf0Tj3ZCx1EURyXhLEr+Egw+NBr3j0xOznslafEoUNdox+93332bK1cuE8Iyde3JsiJWVKr/WBRTS6Wp9aFN0QQjlrIs6Q2G5EWPxo+o8fig/UgGvWEb4TBBxxKCAnXBB6Rtew4SyXMwQm49LrZ29OLx0tCk8KKxBDttV5B4QRWw7GvGowsKJmYFYjKyIifLcs6fu8iV569y5swZLj9/iSzL2N3dZX80AbEYm9O40JLGppUPiGNN6fmz36VEuNAJWTexgMPEfAgjGU6dKapGC/00UuTwVEi2z9JKg4Z0+2SZxeEINBhTae5dmKb6/6iJcr9oy4Tp6zRq8iTkONGQ/4eDsdSfW7B9AH71YQdylIvRnVxp+4c9xqLtQbAypU9Lv6Mr3jR82z1uoqobjSa89dZb/MRP/ISWAct0ZU3vvffksQ2A8x7EtynORVEgRc7y8jL9pSF7rtYKVgmQ5XGFnuaJpDMOTgvHJCgPaAsIA3jt05nFzuhNUEXiG61yNeh4SElkRsjMtIq1dg218wyWlhCbaz1IgHLQ5yMvvsCVK1cYDAYMhssKZFZNBHA1SlJVVVtPk67bvEIWiEohsVAkRaGUA9qjRPdxaGhUy8osQsAGrWDFC41vqPcrGnYoe5vkeRGbJwGSqRKVQo+dUsY711K11KLZ8XTK1o8zf+efg26H+e42T8r9SHJiMjgXyaIkKzi+GXfYdu0D2PH9ugrJGptSXwB1TTwgEZswxtA0DW+++Sbr6+ucPXuWsiw1dNg09IdDfNNQNU3b69TYiMJLZBewFivCcDjk3IXz4Bua0STmSsBkrG0L20K7AC5lUab4uUg02UMLEhoMNlicOHV9Yv6Cjw9em20a08OTZSFGeS/6Rcny8jIeAzIhiPDss8/ysY99jLW1NepaE7yappnya2Q5de3Y3d2P5fQRWwmBIFro9KCV17k/wbSEwGAINjKZBacJXQkYxeO8iT1aBUT7tIwmgdfefJteoQBxnpcMyl7bjWv25ptp5t0TfqCSvJ9g/fz2zrlogTEFbsM0yvOkTvFkKItO1GFRWDM9xN3JdpDmPOxGtElGnR8OJABtdpspGDo1030T6OU9/W0fqCYN11+7wbVvfY+V5bNcvXoV18ROWLUnt6U+4E6tjix1HxfN31C0IJCVA37sk59mZfUst27epNnYYG9vj8IqZtJUCh6WWU5uMqqmApOxU+1TO48XTXgK0U1pZDulHgFembOB3OZYhCyz2vm8s3gGgb61hH6GFAVFr6QJlvMXnuHKn/pTXLp8hV5vwP3726o4vdekMQfGeib1PnfX77C5tcH2/h5ODA5ogkFwLY6oiVcG52u8lDP3ynR1RxsdkRbX0HticbF8XbWodnL3tfKE7k9q/GiCyJ4qjWjVNbbU7m7BtQkWOocin2qnT4yIj5wQmh8yK3P0dnPfThmpukBj5/ukp2YkLlyiV2gGEA5hqtgSJttOVn1xuKk6VDw9lg/EEaX9HlNrnAxlEU/mONr4KAxi5rAHWCbz28wjyAd91z1G4tEMIXDv3r3Ys1OrPJPVAbMp6yFS5weZNXJtnrG8vEx1/lyk+9cEK2qtmExRjGRJpGNaa9Fi62hWOwVWg43cDj4yb4kmLAGRq1OVRaKXSw9ybi1ODGIteVbSK3usnT3LubMX6A8HTCK5DmguSmrNHUKgqpq2uC71gzUmi4i84YG4UzBHJgodbEqb2Dl+WpjmAB8rbyUqAOcctbUxH6GYAf5a100SDV1naF3w5IhoiDqyR0s62oPbmvab5LrqGDpWz/w16Ooj4cFBxL8lAscfWDTkg5EHS2kXKYf3O9fiIKVxEBaS2Klu3rzJxsZG64L0ej1lrIqMy97X7Wos0Uf2IhgCjaY/UA6GrK01hMbFCtGGZqLJVsF7giipToqqNEGxj1wEG4LyYYaA9eqG+JSwE893im3E1G8bq0LN9NxsCPigpDJFUTBcWWFt7Qz9pSFgYr+RQGFMWxKfiHwnkwk7Ozvs7ysPhveQZQZfJysgMqZ3FoZHncKtZanUv0gCTjvFJAbfKl1rLabozdzTKaaiNkWbIzOzOBxvPK0i6JzTA/u2z/38PE65ETHfpW2N2dku1S2F2WNNBzr/UXyeIjj8I6YsZqW7AqS/u69JcRzWku0gi2CRzCeydMfQTW4hav7k5ydwaX19nbt37zIajVqFMO0OpQuDdjvXXpTtwiCxM0W0G8vegNWznnGtVaDbe/vUrsFV+tuJTNdDZO9WNisrWt2aBYO3gImFRdHPTyS/YqbnEYzmbxiDMnmLYBqPr5XNvNcbsLKy1malNk3TXnMR5dUgMoiHEBiNRrEX7L42QoqWTxOvnWInJrrSjzd5Z8Fuiw8eIz6yjDktuJOs5TKFBy2K6TEiqOpVcczOu+MOiFnQNH3Wvo9csdGq1IN3ktUi2KuSFJ6ZOcfptgsGFWLSnQ4DLVdX8Hr6nGjZ/+PIiVEWMw/lAnm/rYp5rKKrsLq/3eZIyDQhZnt7m9u3b7O1tTVNgErVgCJYphreh4ANVn1X9Mb64BAMJs8oh0usrikrFduaFVlPGjJFrgh+2gk9uJqU8GVAqeZi5aExBhvHaUIi5o0me/CRBFfzJ3RiqvvhxzV52WO4sszKmTUGS0M9V2vpDfp6fjHMGUJgUo9pmobd3X02NzcZ7U+mxUttK8pZwuUpm/rh9+nAuZD4WkXxppQjIolajogdGC0wC35xxGCRAnnADT0wHZypQpifUxFU7n7eOjZeSDc/WX3d8Zg05zoYioqZHluY6WkKTK2quCi0neK799k9npI+McriOPKwodGDMIvDJmK398L8fmkM3eQtay27u7vcvXuX9fX1VlEky0Pp2D0Yg/VMF4mOn+lRPkoJGTYzlIM+S6sryPnzWvOxu0cg8obSQCwKkxBBwRDQ7hsGKxnWWHKTxehL3C+EaQGVUkLjfNBoZUzcIhgkyxkMl1leWWNleZWiP8BpAUK0KHwMIgS8OG0X4GF/f5/trV3tcRLAYslkGj6NdLyaHCZdIPDh72X7kMcWAIhXsx2rCs83qgIjF0cIgSpGsLr3t72PrbKYA31jFObAR2zRXJx5uDu5JISYpBOVVkALB4U2oYoOliVtfnabnB7nnt73qeo7ePFTDCRt+fjZqCdGWSyyHA6yJmbN0MVyHHCz62p0J9GilSZt212N0uTb39/nzTff5PU3XuPzX/g3GI2FwWCA8zXO1+RW2add8IhXLs9gpOUzJ2g2p/eBxmu69erZc5yTEpsVbGxsUo3GGIQ8K7Vbj2vo59pHxIcps7dpPIU3sXfotO6jBUkJ5HmGt4IJnonzVDETdBQMz3/kBV786Ec5f/FZ8l6JMwbnArVrGE80pJvnOSEbUXtPFWrqynF/c5s7d+6wtzeiaXx8GMEYG/ukKGdI8EZXRZFIO3jYpJj67tNFXDlVAxC8m6lrCSE2oraGajxBvHKjihFwml2beEunIKxBrHTmwJSmTs+h6TyOZlZxhKT540PY9jTwQIZ2aU2n4rQuSNcN8gyyzJNZaYmSAg6r5KBxDMmF1VqZdLl8wj5DAs+NWooAJmCMQ4wqPyXx9UzV0KPLyVAW8cbArCKYd00WuQXd7Y6KpnT3n/VbH7Qk5iMfoPcw8UJ0x2GMYXdvm3feeaf9bjxW+rqVlZWWni6BgsaYdmVtvJZeB6YPtAtCEEs56LO2tkavP8QEaKo6thqweO+mCotC1+08cloGyONDEfCxz4hEbk9PHb/HB1yleRGIUAz6fOzjH+fMuQv0l5bZn4zZ39vH9gpNbsoznKvZ3rkf62GE/f3A9p5aFKkepmkayrJHVVVkxupD0sE7pqXxs/ewe+0PtSLb71NERZf/hBUBZHmpWItTzCKl4acIlojEHAy0lYT4B+aVjrdoj5ksFd8BQzObtX8bifk4XpR13Dk8MQs1OMDTK3S4RQH90pDlhtxajFVa/zxFzEJolUHjPeNRJJP2TLGH4AliaGpHXqTPQDKDNRaMZXt3FAvomsXX8iHkZCgLOT4G8ahYxaPKot+bR819aNje3ubmzZsRs9CWg0VRKKntgiG3Hcw63yk2YBCvSVVZXrJ65hxrZ8+w7hzOBQwBm+ex3kNdGJGAsXkLXtJRYopHxJ6lXslwmhBoRhNGdcPY1eRFj8HSkHOXLvPM5ecRk9GEiA1YtQQSRtGtriWyn08mE/bGIyaTyQytQHAeOQSEfpISEvj/ENLeW4HY4YQHmoKGaZ6CulKCBHV7smipaG6Ei/wfjbKRO5DoLJgAxkKWCatLOUWZUeSGPBcyA8aqInV1wM7ldSSFNykrgheaAE0dcA60da4n6xUEW0fLFFzjCX5CCEKZG5x4miBtCv2jyslQFgtCp09T5le1Rf4yzLosdV1z69YtxuN9lpa0ZD2FTtvq0/YYnhDMbBIS6juHiINI0LqOYtint7SM3N+mMSNo1AXxooQ8tW8iS5QmGIXgKawl2AyJZDwhKON47Tw2N/gA40nN3niCFDkrZ8/y7LPP8uyVj9DrDxnX6tbUPsTqzE54McYyXGiiJdEwGo3aBshtLgizluBMlCGG+h69bDrwQLDwIY71gPXYDefOV6GayKsaFiwcrsHTIEHT+INHSYYCFOIUaDRQFBm9MqPXKzh7ZkgR+UPF+Jgr4hACLs8pjJ0dG1A7R1UZxZiCUFeBcVVRV3rSg0GBl0SC5BnXDtfodTYGJiEQHI9tW5wQZTErB4GPx3E3nqQclfsRQsBY9cuN0VyDmzdvsra2NkM/l7aVaDJP8Q+J5e/6eQpzBtH8B59lmADlcMBgdVlJbiYjLbXOA3lRqqlbN0oiI+qfVk4zU40YGq+uQe0bGu90hYlUc1IWDFfXuHDpOZ67+hHWLlxgc2cXL2aa8GUMYjNNdDKCeHV9fGjwkZlrMhkxHo8je7Y74D5NMZPHvi8P6oqHP0YX/zIHA95JgShuounmJkKO1kAmWvgnQf+WXN3KQaHXsCgz+v0evV7BsF8yHOTaAd5XNE2t5fyuidetoTBTPCyNMc+E3KDh4CBUpaescupK826K0uC8AFolPHDKY9J4w95YG03VNUweU1ucSGXxNOWoiMs89pHmWLq5f/Inf8Lly5c5e/ZsfJAmSGYWKp7QJuDMQu7JWnECdfAM1tZYrieM6wqAq9UoAAAgAElEQVRvBGuUUm91OKCuKvb29qijC4DzOOuwVklufBAa8YTcIFlP+5gaobeyzNmVVc5efIYLzz3LYHUVspzJaESWG4zNKKyFmF/h3dT1EhGkw5OhyU/VDA4xxSD0yZ5PRIq21CPepScjiyJkB0W/QggKrAaHMWCN0CtyitxgxGFw5LnVBzu3LJVJWSj1YFFklLmytnunvVwCFbhJ67paCQQXYpRE09yDaNf5YGJDKEy8/xm+L3iv2Ihz2m5TNVZBQDvDZbsGYY+6DmyPH+96nThlcVi22dN2VbrRkba6NEZEtKO68Nprr/GpT32K8+fPYYzgXIO1WpGZQuOpra/G8O2Bv+Uyg8UyWFuhX43pjfaRXsGg12NpMKSfZ+zv7lEjjH1DPXHK/I2ltuiKaAIhTKtKM9Nn0BuwfOYMF569xNqFCxS9AT4IVV3TGw71HI1gjCUDRqMRdaN1FYlJOgGZzqWM05rU90o6IboHlOuDdENPTQ5bGNKYna87n2lmqLGGzBpWhiWry0P6PYuxgTIX8kyjPr1sMqXjl0BuPcZ4gm+01UJd4asJodHEthbfME6bLmEg4rde2y/hfRN7gWRkRYGIpXae/f0x1ihJr1gDRtnFxGYUvZyi1KK/Wxujx7peJ0NZdKIh8CBG8DSUxKIM0gTWzYdwk8uxv7/PN77xDdbWVrl48QJXrlyZPiCCmp84QtDiJnxAYiMh04bJfGTyEkKvR1VPePvuLXb3dsmWhqxeuMDS0oBhv89oZ49+ntNkghn2Wpwkw2sfVYHMWnIjsRIzZ+3ceZ5/4SWcGPYmFZPGEYzVsnWPFrAVPbwL1FVMsIrRBLzDN0qoUkWLZlKNtK3B7i5VNW5N6IAj+KlFpeCrf2z3AVQZhS5I8Qhd0GeSr5gNkU9fBbGRtT0Rq7pG69CMEJwwGCxz/uwKeebVqrCByXhENdqAkGlRYVAVabzENglGu9ZBy0QWYuTDUGtI2TeKM8R5EUTdWMkcuTVYq02mcDWTUUUmFaYoMGTU1YQqaHHh0pkzDJdW8aHh2g9+FJQFDz6c837vwyqM+RyJ7mfdCZxwhe426e95RWVE2rBdjEOQmZwyL9jb28FaSzUZ89aNG9y5fZtzsWw9Cxbjjb4KOlF8ICtznGvIbEbtPZlVEtnR/oQ8zxlXI9bX17l1+y4hKK1dIYaxF9y4wduMMBhSljn56hrWRqVQTzkl8l7ZsnAbkzEcDtkLHu8aGl/Hc3I01YTaCWWvQCQS7gjYTMhsjnM1zajB+TqSGmubw8Y1+NBw//59BXq9U+4Jr20Nm6qe5qy0eR/TnqIz9zVGcxbdi9l5IockdXXIiDv7SJiC0VP3x8QEs04EpL23cXw+NuyRlACWEXxDVXvGVeDWrU3G4zFnV5ZYGuZUOKrJiLqqMUYbX+eZKoLaVRqZqjQ/xApY77He4j2YkFGZTBPk0nz1mj9TlKqwCnpYl9PUQl0JrsmRkaGWQHA5uc/w0uBdTRMqerubZDZlET+enBhlcZQymJ9A74fMJ10d5Mfq59oDI5nhab/d3V1u3rzJjRs3eP755xkOh61vn3z4aXadWgLjyZg8L2mcjwVYmiNx8533uHbtGltbW/R6/Zbqf2tri/3dPTY21tUtMKr0ykyZt0po3Y7l5WUuP/88q2tnyfOcqlL+fWOUCDjlEFhrldxXNNvSxorRgG/zIloMRqbp03Vds7c7Gw0JIeCDb3uStNe3vX9JCRx8Lxbd58Nc1EX7L97+QSukq5S644MpHeB8NEcCjKsJwYF3E+rxmP3lgl6ZkRmvYVaxWtQXAWyCwbnYYjGGzU1mVfU5g0ZcpyCwDWl86X7GlHyUm9SjYfA6ZmmGusbjCEbZ1FyAqqpxolwljysnRlnA0UlVx932KDnI0gDaMKeZcznSft2ELtAHvs0EjMdbX1/n9ddf5xOf+ATPPPPMjIsVQoj4hnbw1v6jDVlWMBqNVGk0DTdv3uSVb77C7/7u7zIYDFlZWWnJcne39rh1+ybvvfcezulvp27a1lqYTBgMBhRFwcWLF/nJn/xJbNbj0qVLeBMp+UQwWY/GVzFZTGtJNA25m6wWYhNk314f75v2OjWNWhWpRB9omcC895qU1b1mM5bd3H3hoOTl+H0KcR4677vK4Hj4yIPzYNba8YQ2zK2KIraJbGr260BVe6q6pqpzlpd6DPoFy3lJZrIY7YpFeCLEtq4aYkUI4nHB4CUgVnBuGl2JPP9a6GcttlAswjmtMq59wHmhcQ4Ri3fgJCA24EXTuyd1wMQm2I8rJ0NZHJGUdZCL8qTkqBVrHtTsKoZ5N2nQV4Dw7bff5t133+XKlSssLS21tSIh+LZrVAiaXFOWNloZBWWZsbGxwbe//W1+7/d+n6997essDYYsLy9rqjewtbXF7u4u2zv342/rQ5zAuPHumMFggDGGCxcu8O6te+xPHD/zMz/DcLjUEgv3+znGZvjoKmTWttZLNwqgCmJaRds0WjqfiuU2NrQlgnOdzNj4ZM+HSgPM5DXMfM5iC3JaqXmMm9kRTXeOULLEC9Uey8xvPP39mYivFvR0x+CFSMVowCuDelXDaNIgtiZgWLIFRnIM4HygcTXGCCaDLIukzo2m0QfvINb1zGa3av6MEUtWaEzWe0/lPbVzNMHijNBIwESqA2MFBcL03jW1x2oY5eEv4JycDGURjs6teD/dkK7J2k72OYtifvtU3ZneO6cgbVGohfDO2+9y/fp1XnrpJVZXV2PTohQy1GNYoyuzUvgHssyyubnNH//RK/zB//V/881XXmV3e4ftzR16vfttu4Fu8pPNdDWqqkmLU3hrGDU1VVUxcYFJ/Sq9wTIvfvTHefHFF2lcoGpqyv6QrOiROT2HjGkp+vx/5xyTSlstjsdj9vf3WwW4vr7eWhXqXk2vm6Ytd+pqxEdo4mg+i0dVEkfKA1mSh/+IsmnFqFVUOj6IWk9BY0CVAyaBhoq6CaxmPazNKEqrwLZrNJENVTRBlHhHS0ECIl4tAjqkwsYgmURgU7N7Q/B4HHXwcVtLEyvLMoFCLMZYPA7nDI1vKIygvVceLxJ1MpQFR6/u8xGIx5GDsjO7xz8oIau7jTGziiwxZI3HY+7cucPr19/gvc/c4oWPvEg2zKLprhPVORdR8BA5MjK2t7f5+tf+kK985Sv8q6/+v+zs7Cmvp6/jNjnGCIPBUkvVFwTqZoINOVlRqMUSXQBkhAtw884dXv3WNT756jc5f/EZ1tbW1BJID60k10FzH+YVRTrHyWQS3aaq7UoGcP/+fWDat8R7j2S27XzWtS6SNZaAyoPkoHYeiqMcfv9nQGo0eiMLLQqZex/P1Qtt2nd7jztbBhNT7TMCjiYo1uRr7f1SNzU7ZQ5ZgCxDTAnWEfyYEBoqH7GcGOUkaJha+9NOM36TaynClH7AmrZZVWzwgItWBWIRm0dWNIMNnqpucGLiXP0RURaLkO/575+UVXGYsujSmqVJ3R1Tl8vCe9fS4PX7fUQsGxv3KQptOnTt2jVWV1e5evUqL+QvkBcZvV4vZnvWiLH0eiVV7fmjP36F3/md3+Gf/tN/xhtvvMF4PIagvUVXVlbweDxKkKv5GrliDSZgJNPuWyFE01YVSVn2SR3Svv/97/Obv/mbrK+v85f/0q+AD9STClcbJqMxoSh08kXgMrkjjau19mNvh9FoWv9RFCXGWDbW77O+vtlWNqaSaMFQew3zAR0OjM5170Y/525t90/tIqDuwVG4xnRnaZPCQwtaChw6h6LC6ICc81G1YGzcTCNhqfE0Eqh8g69r9ht4K4zo7TQMl8YMBzlFz5KZgkHf4nyFiXZBitpYMRhrKDqFa9bGuhTRe+gF8B4rASMBH1NZjYAttGCv8ZqnIVmOBOVG9Y0nZIvzeR5Gnm4K3Zx0FcLU1JeZB/QgpXGYJXDYdt3P53+n65p0x9LFLlIValIy6iJohWLTeN56621+8IMfsLe3N9NUeDKZYAxUtR7r+9//Pl//+r/m5s2bLaZRZCWTSU0IQlH02irJbgTGSkZqhktE4K1AU00wBIrMYgi4uuLtt27wnWvfYnP9LitLA5pqTFONKXOLwbfnlRRFAm+bRis1g49dzhrfukR37tyN+00jK91rvCirM1lTrQJZcEtENIktJbLNY0Pzlk9nTxarE/18Zr9gpv8fkNmQOqDsYtAOuPFa9ekRnIdARpb3MbZkrwpsTRo2dkbc2dplc3fMuAGTl+TlEGMLjag5kCDkxlKIjX1sc4osJzOxk7zzWEkeUAw/O2XkzYwaQcZCXqSGWHULqhIS583jL7QnzrI46H1XSXRX/YMe/sPcmkXg5HzYdH67+VCcvp9mRiaux6IoWoXSNA2bm5u89tprvPzyy1NMwXuyXDusV1XFrVu3cS5w9vx5xFpGeyOyrMA4Icuytqw6WSzd80hmv6sb6tTCzit+sLe7refiPK6uCK7m2jdf4a0332B1eYlhzNacgpjpIXRt2DSds/Jqeq18bBqWl5fZ2Nhga2uH8bhqLawUeg0xfOBBF/QwGzY9StyhQIVHxBygKB6UBxaYpBwWbj51Rw6TxMSd8jR8iFhEpMCqvFA7TzVxlB5qb4CCleUeZaZs6xgQmRChSazNsSafVjVHfMcTu6sEVVCapwM4hw+a/m+MRySxqE8XJWM65txjyolRFosSqJIswhUO2v84UZXDAMx5pTBv0UyjGolt22Ktb/34oiiii6KRgu3tbV577TU2Nzc1dOknZFlGUZbUdcPurjJi/9RnP8vy6ipV1fDVr36Vra0tlvrL5ISWhwE8ZVmqPyuCZHaG61OCug9FrEWpxxNym2njHSNk1vDO2z/k9p1bjMYfZWVpyO7enuZolCXjWKPQVSCJlLjLVu6aQL83ZOv+W9y5fa8l3qnrmjwrQGYzcoG2TQEi7dydrwaHqSWR1vpF96ZllGuVedq43Yl0lBD/2XDEHApm8YDSdzOjmo5NsVFVMB51JyDgTQ54vKtxPij/iKlY26+xg5JMLJk1hMwiIWBNSVH0EBctV7Q3i48d8IwJMRnOadPo6GMF11BYyHJtvO0iN0ciAhaRtp/M48qJckO6Mg+uPcp+R20zbykc9JtpYnUb8iRloA+rYG3e3ti0b0quun37Nq+//noMZU3p3XZ399ja2iKEwNraGh//+Cf5+Mc/zsrKGtVo0gKi+vsRLPSexlUEHJmhbWqcXJcsy7TKcFJRVxOdwjJtI2Ct5Rtf/0PeeO16tHQU7W+aKuYE+JY0xzlHVY1jijJRMeakVfDevQ3u3l2fumOdB3KGzIgHc1bmpetydO8JMMUe9CAz2xx8TDOzTTr+9L/p/I+fxavc3UabO8uB/xePRVrXUCQnBGFSw/6eY2NzxM5ezaQKeJ9jTB9je2BybJa39yg12zbGtEl3yY01QVMwjNEFIi8Mea40hkY0Pd3Ee+Bjot88Z+ejyIlQFoHZh3URGv/APnOfH0dJHBTl6FoK3dejJCmMLuem7g8aHdBin52dHV555ZV2EmQ2ZzQac+/ePQUL+8oqVRQFly5d4tyF8/SWl2YUUvvfT/uKeO+1J6tX3opMjFL+h4CEQCYWXGC8t894b78N01777ne48fYP2R3ttg9GMvudb1r3w/umLRJLom5XwWg04fbtu2xv72KtJc+KGRcpXe9F79N17z6885JW7UV3oas8H1b0AT4I7DvscZjlH5GgdouEpGJoOTyUr2SayOUdNDWMR3B/c8zGvT3u3x+zP3ZUHpAcbIE3FpNnZGWhhWLWxsjHNOFO/xusFazVKEee52pNBYf4KVm0q2qaWpm13GMS38AJc0OOwh8WafJFFsKibY/z+/PHTm5H+nvetJ7ff37bBBY2jeX69esAlGVJ7RTLuHv3LisrK/Tz5RgWDQyXV5RCv2koyiKWfgdEAtY5jFusWIHIsWBig+bYGNl76rrBI5RZwd7eHk3TxAjHiF5PO6whFqFp3ZoQXPs+rXb63jIYDFi/t8Gd23cZjyY0tWtXwiRJeXbv0VELwMz1POy7FEg5ELLoPPQJfzq02OwwMtvjradWEqNW0Lof0ZIAvEeCQYIjeKgmcN+PtaRcBAYleZ5hipKsV1JEC9B75UWVmANjYp6FtapQcvGIsZrQJTl11bm2PuCbEFsyEHGVHxGAU5iyarefzaHf81bBYsDx8NXsgd/tAJfzx+v2AU3H70ZC5o8TQmizMhPwmLqT7ezs8NZbb/Hd736Xq1evcnf9Hs45tTTKguFwyP7+mMYHLl68qH1Ti17rEpSlHrdyFdQp+9PRVHU0NV10gaYFW9s7OzpuIxEMbNja2uLCMxf587/wJT7+iU9Q1TV5USgHQvCI04naNJU2PZ5MAK/kw5EzIQRPr+zzB6/+K65d+w7r6xvs7+0xXFqiKIpo8aRoUDNVsJ2oRjtvDzEOjlL60sE+jpSHrUo9hKPPhNlhKxnONKSODwTxSK2Fh8bk2LLAxhLzyWSfegLOaQi6QSgHfbLBkKWza5jxHvWkYjwaM2lqghGKskc5yPC+Ie/lDI3gvOBdRt0PBJ8z2dew6aRucF6rVfFCkWkv2jIvgJ2Huw5zciKURWBKUdd+1sEOuhTuSXsuWrEWmbpHhVQP8jsPC9HOkwt3w4GJGDaFFr33WNGuWTdu3KAsy9YdGQ6XAaPgpQk0VUVZ5hpfNxpN8TggYhHeYo0ls4U2Om55FU1b8CWZxYvHFpGgdjJpFV9RFLz0wov8m1/4PM8//7yCmE0DDeSSLIGpGaulCVkMiXrqekRZ9tnd3eW9Wz9kUu2DOHr94UxjoaKwNE2FtVo4lfj0Ja62LeWeLMaPZhaKEGbuhR4jKfa0z7Qxj97kub8PFT/3yoyiWISjpGnRtSZ9tCrECiFYyJXiEDzSpMO61CieKhi296H2NUE8Zb/HyuoZeqFWAmAKmjDGETTaZjOwGWDJcrAOmtqTe2VaG3un3K3W4qoGP6nJrEPKBmsFTM3jyolQFkkOegjTg3iQHBQdmbcWFsmikCnMJl8d5/fmjzfbUsCzu7vL66+/zuXLl7l48aLyYcYKQmMMmRGsVeWSgEpd2TvAKp1Wg1EZpfGEENnD65rxaNQqtfRaFAVXrlzh5Zdf5sUXX6TX67UJVsldSpM/uRxVVbXuxWQyoSxLnHPcvXuX+/fvt1WzafsZst5juhsfNjmue9td7HwItHzukZBII1we52qsNfR6Baury4hRBneJ2ZhKAaKAsipgq7UlDoxoCBkHvcZRVQ11PWqfFWstxgpZZlCd9nhUWSdCWbSRrwWTa9EDv8gFOWybeYsl/d19oLvbJaxinuviMNN4/jfmlcVkMuH69et8+tOf5vLly4iNK2a0QvLM0jR6k3u9nlaX7u4utLZSp7H0cCeFkIq7JpMJ/X5/pk/GpUuX+Pmf/3l++qd/mqWlpdZFSuBlXWvWZ57b1v1JSipZSP1+n83NLd555x3W19fbSbmoQneRHKbAu58fhl89WTkoVHqwG9KVRefSnSPz0TUvYKzS4hECDo+vYWt7B4ywtLREM6jJc4vNMwqG1M0IsRZMRuMrsiynzEqcCzhxZFlBaAJFNYkg5jT/RJVFLG1/AiXqJyIaAtMHFKbhuynYdnCYc/7z+YrJ+e2POkYax0HWStqmq2QOW0G7E399fZ13332XqtIErhSSBChiXYeINijq9Xqdxspeke24+neVmtYOTEvlE06QmugAnDt3js985jP83M/9HJ/73Odai2UwGLTnWxRFe+1TElhZlm3CWbome3t73Lx5k52dnQie1u2Y5i2zeddx/hp2r/n8ZydBDruvh415Hvua/x/QKg0fOTarBjbvb/PDd97l5u173N8ZE6SkN1imv7xG2VsCyXDeYG2JLUqyLMdmBXlWYrKCPC9bizRFTbIsaxeedH8fR06GsuiEhrrl313SlUUuSvp70efzk7MrCyMJC/afVz4HHe/g05rmQBhj2N3a5a233ub+/fsUWc4ougsAmZmGxspSb7wxRtm+O2PtXossyxS76IRwQwgdQNKxtLTET/3UT/HFL36RT3/60zz33HOt1ZDGlcaoisG3CiR5fkmJhaDK4vbt2+zu7s9cn+41m7/Wh70/iYoihEA4BHxN2yQ5SmGISCxIM7iYaNU4r8laCC7A/gRu3dvgvTubbGztMq4cJu/R76/SH6wSyAhEMgzJwBSa8ZkXZFlBURTtgpPZvHUnh8MhZS+nKPLHvi4nxg1Job6u2dt9UNMqOrPfAROtO4kfZhLOm/yLJv5hOMgicFRElJSkCWxubvLuu++ysbHBSy+9xHA4bC2HtG2bWDW/SkvsnB40szLP8xZLSBmW3XEVRcHS0hKf+MQn+OIXv8jP/uzPcu7cOUajURvWTBZGit7MYxP7+/vkuU648XhMVVVsbW3FNoV7HWtwWny3WMkuBqBPvITYGHlOZsHWxXOhe0/bwwHBx1R1o+n0EiCVs9SNZ2PLY/JdBisjsl6fpeUeRZljfEOW1SAWQgbiMVlOnvUQPNa6GH43M89MUWSx38gH0JFMRK4Afxd4Fp0VXw4h/Pci8hvAXwLuxk1/PYTwj+M+fxX4ZdTa+k9CCP/nEb/Rrl4w+7CnmoSUG9B1EZLyeJxJ2LUoFgGr3W3S2Ob3nx/D/DbeB3q9Hrdu3cJay+///u/zzDPPcPHiRSZ1xWQ0our1kABLS0uRL1NJXZumATft3E7H7QghsL+vrQN92xHLU9eez372s3zpS1/iC1/4AlevXuX8+fNMJpP22mZZRl3X9Pv9lswmKZwmkslqJa0wHlcURY/r169z/fp17ty5NxP50XOcdo2fv4bhgGV60UN3HFD68eSwfIoHw+LHcUXmJYSAzaQ99+A7LpqxOO8xxiKS0XglABYRgrXsNzV3NkdMwk229isuP3eBS89dYLh0RovPIpOWkRxjDSbrEVyNMRnG1BR5ydLSbHPusiyOLOs/jhzHsmiA/yKE8Mcisgz8kYj88/jdfxdC+G+7G4vIJ4G/AHwKeA74FyLysaAMIotlDifoPpgJ9e+CcfPbzE/S7vdpm+5rAh/nf7OLm3T3PcgFOcqETg8mHpZWlhmPK3Z29njjjRtcv/4GzzxzCcEyGVcMBktsb9/HEJSAN0+ZhrPdvtss0Fhg1uI8jTbDLcsSV1d85jOf4bOf/Syf+tSnlKR3T7kxxuNxe021vaJvJ1aKmij5bqAoCiXQmUyw1rK+vs6NGzfaornUCsDarPN+qkDaa9cJNc5fu/nredC17lomi6y+o2WuVuWAscwvFI/yjD2g8GSW6EcibhHQqlUx2myqbjxZgMoHdvbGcG+DssxZWlpi6dIapffUk4rQOIIIIhYxGWVhGWVjbUuRKatWcjHrZp/aNfR6H4AbEkJ4D3gvvt8Rke8Blw/Z5ReB3w4hTIA3ReQ68Dngq4f9Tnc16l7sBOClbR4VP1j0W/MK5v0SY4zS/ouoKb+xycbGBjs7O2QxkSttZ61t8YvOEZiHl7QtoZuxwkzQc7l69Sof/ehHee655xgMBu02h52niDBbK/4gnLW7u8v29i6j0Wjq9gR5pAfqZMphmZzvg4QH2auC116mo1AhEtjd3Wc0Gcd5P6vUjER3NbG65wVFocdLlroPkxgReXzEQR4SsPsI8AfAp4H/HPgPgW3gG6j1sSki/yPwtRDC/xr3+S3gn4QQ/ve5Y/0K8Cvxzx8H1oF7j3EuH6Sc58MzVvhwjffDNFb4cI33x0MIy4+687HVjYgsAf8A+M9CCNsi8reAv47iNn8d+BvAf8zideYBjRRC+DLw5c7xvxFC+DMPN/ynIx+mscKHa7wfprHCh2u8IvKNx9n/WKFTEclRRfH3Qgj/ECCEcDuE4IKiV/8z6moAvANc6ez+PHDzcQZ5KqdyKk9fjlQWoo7ubwHfCyH8zc7nlzqb/bvAt+P7rwB/QURKEXkB+DHgD5/ckE/lVE7lachx3JDPA38RuCYir8bPfh3490XkT6Muxg3gLwOEEL4jIn8f+C4aSfnVQyMhU/ny0ZucGPkwjRU+XOP9MI0VPlzjfayxPhTAeSqncir//5WTke59KqdyKidenrqyEJE/LyLfF5HrIvJrT3s8i0REbojINRF5NSHKInJWRP65iLwWX888pbH9bRG5IyLf7ny2cGyi8j/Ea/0tEXn5hIz3N0Tk3Xh9XxWRL3W++6txvN8XkX/7Ax7rFRH5PRH5noh8R0T+0/j5ibu+h4z1yV3b+aKqD/I/2hPudeBFoAC+CXzyaY7pgHHeAM7PffbfAL8W3/8a8F8/pbH9OeBl4NtHjQ34EvBP0PD2nwW+fkLG+xvAf7lg20/GOVECL8S5Yj/AsV4CXo7vl4EfxDGduOt7yFif2LV92pbF54DrIYQ3QggV8NtoBuiHQX4R+Dvx/d8B/p2nMYgQwh8AG3MfHzS2XwT+blD5GrA2F9V63+WA8R4kbTZwCOFNIGUDfyASQngvhPDH8f0OkLKXT9z1PWSsB8lDX9unrSwuA293/n6Hw0/waUkA/pmI/FHMPAV4JmgqPPH14lMb3YNy0NhO8vX+K9F0/9sdl+7EjDdmL/8k8HVO+PWdGys8oWv7tJXFsbI9T4B8PoTwMvALwK+KyJ972gN6RDmp1/tvAS8BfxqtQ/ob8fMTMd757OXDNl3w2Qc63gVjfWLX9mkriw9FtmcI4WZ8vQP8H6i5djuZmPH1ztMb4QNy0NhO5PUOJzgbeFH2Mif0+r7fmdZPW1n8a+DHROQFESnQ0vavPOUxzYiIDEVL8xGRIfBvodmqXwF+KW72S8A/ejojXCgHje0rwH8QUfs/C2wlc/ppyknNBj4oe5kTeH0/kEzrDwqtPQTF/RKK3L4O/LWnPZ4F43sRRY2/CXwnjRE4B/xL4LX4evYpje9/Q83LGl0tfvmgsaGm5/8Ur/U14M+ckPH+L3E834qT+DnVUBYAAAB6SURBVFJn+78Wx/t94Bc+4LF+ATXNvwW8Gv9/6SRe30PG+sSu7WkG56mcyqkcS562G3Iqp3IqHxI5VRanciqnciw5VRanciqnciw5VRanciqnciw5VRanciqnciw5VRanciqnciw5VRanciqnciw5VRanciqnciz5/wALAj/Xp5FT4wAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f981c765390>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import cv2 \n",
"import matplotlib.pyplot as plt \n",
"%matplotlib inline \n",
"\n",
"# extract pre-trained face detector\n",
"face_cascade = cv2.CascadeClassifier('haarcascades/haarcascade_frontalface_alt.xml')\n",
"\n",
"# load color (BGR) image\n",
"img = cv2.imread(human_files[0])\n",
"# convert BGR image to grayscale\n",
"gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)\n",
"\n",
"# find faces in image\n",
"faces = face_cascade.detectMultiScale(gray)\n",
"\n",
"# print number of faces detected in the image\n",
"print('Number of faces detected:', len(faces))\n",
"\n",
"# get bounding box for each detected face\n",
"for (x,y,w,h) in faces:\n",
" # add bounding box to color image\n",
" cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)\n",
" \n",
"# convert BGR image to RGB for plotting\n",
"cv_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n",
"\n",
"# display the image, along with bounding box\n",
"plt.imshow(cv_rgb)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Before using any of the face detectors, it is standard procedure to convert the images to grayscale. The `detectMultiScale` function executes the classifier stored in `face_cascade` and takes the grayscale image as a parameter. \n",
"\n",
"In the above code, `faces` is a numpy array of detected faces, where each row corresponds to a detected face. Each detected face is a 1D array with four entries that specifies the bounding box of the detected face. The first two entries in the array (extracted in the above code as `x` and `y`) specify the horizontal and vertical positions of the top left corner of the bounding box. The last two entries in the array (extracted here as `w` and `h`) specify the width and height of the box.\n",
"\n",
"### Write a Human Face Detector\n",
"\n",
"We can use this procedure to write a function that returns `True` if a human face is detected in an image and `False` otherwise. This function, aptly named `face_detector`, takes a string-valued file path to an image as input and appears in the code block below."
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"# returns \"True\" if face is detected in image stored at img_path\n",
"def face_detector(img_path):\n",
" img = cv2.imread(img_path)\n",
" gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)\n",
" faces = face_cascade.detectMultiScale(gray)\n",
" return len(faces) > 0"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### (IMPLEMENTATION) Assess the Human Face Detector\n",
"\n",
"__Question 1:__ Use the code cell below to test the performance of the `face_detector` function. \n",
"- What percentage of the first 100 images in `human_files` have a detected human face? \n",
"- What percentage of the first 100 images in `dog_files` have a detected human face? \n",
"\n",
"Ideally, we would like 100% of human images with a detected face and 0% of dog images with a detected face. You will see that our algorithm falls short of this goal, but still gives acceptable performance. We extract the file paths for the first 100 images from each of the datasets and store them in the numpy arrays `human_files_short` and `dog_files_short`."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"__Answer:__ \n",
"(You can print out your results and/or write your percentages in this cell)\n",
"98 percentage of the first 100 images in human_files have a detected human face\n",
"17 percentage of the first 100 images in Dogs_file have a detected human face\n"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"98 percentage of the first 100 images in human_files have a detected human face\n",
"17 percentage of the first 100 images in Dogs_file have a detected human face\n"
]
}
],
"source": [
"from tqdm import tqdm\n",
"\n",
"human_files_short = human_files[:100]\n",
"dog_files_short = dog_files[:100]\n",
"\n",
"#-#-# Do NOT modify the code above this line. #-#-#\n",
"\n",
"## TODO: Test the performance of the face_detector algorithm \n",
"## on the images in human_files_short and dog_files_short.\n",
"Oh_these_humans=sum([True == face_detector(image) for image in human_files_short])\n",
"BowWowDogs=sum([True == face_detector(image) for image in dog_files_short])\n",
"print(Oh_these_humans,\"percentage of the first 100 images in human_files have a detected human face\")\n",
"print(BowWowDogs,\"percentage of the first 100 images in Dogs_file have a detected human face\")\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We suggest the face detector from OpenCV as a potential way to detect human images in your algorithm, but you are free to explore other approaches, especially approaches that make use of deep learning :). Please use the code cell below to design and test your own face detection algorithm. If you decide to pursue this _optional_ task, report performance on `human_files_short` and `dog_files_short`."
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [],
"source": [
"### (Optional) \n",
"### TODO: Test performance of anotherface detection algorithm.\n",
"### Feel free to use as many code cells as needed."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---\n",
"<a id='step2'></a>\n",
"## Step 2: Detect Dogs\n",
"\n",
"In this section, we use a [pre-trained model](http://pytorch.org/docs/master/torchvision/models.html) to detect dogs in images. \n",
"\n",
"### Obtain Pre-trained VGG-16 Model\n",
"\n",
"The code cell below downloads the VGG-16 model, along with weights that have been trained on [ImageNet](http://www.image-net.org/), a very large, very popular dataset used for image classification and other vision tasks. ImageNet contains over 10 million URLs, each linking to an image containing an object from one of [1000 categories](https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a). "
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Downloading: \"https://download.pytorch.org/models/vgg16-397923af.pth\" to /root/.torch/models/vgg16-397923af.pth\n",
"100%|██████████| 553433881/553433881 [00:06<00:00, 81802736.06it/s]\n"
]
}
],
"source": [
"import torch\n",
"import torchvision.models as models\n",
"\n",
"# define VGG16 model\n",
"VGG16 = models.vgg16(pretrained=True)\n",
"\n",
"# check if CUDA is available\n",
"use_cuda = torch.cuda.is_available()\n",
"\n",
"# move model to GPU if CUDA is available\n",
"if use_cuda:\n",
" VGG16 = VGG16.cuda()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Given an image, this pre-trained VGG-16 model returns a prediction (derived from the 1000 possible categories in ImageNet) for the object that is contained in the image."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### (IMPLEMENTATION) Making Predictions with a Pre-trained Model\n",
"\n",
"In the next code cell, you will write a function that accepts a path to an image (such as `'dogImages/train/001.Affenpinscher/Affenpinscher_00001.jpg'`) as input and returns the index corresponding to the ImageNet class that is predicted by the pre-trained VGG-16 model. The output should always be an integer between 0 and 999, inclusive.\n",
"\n",
"Before writing the function, make sure that you take the time to learn how to appropriately pre-process tensors for pre-trained models in the [PyTorch documentation](http://pytorch.org/docs/stable/torchvision/models.html)."
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"208\n"
]
}
],
"source": [
"from PIL import Image\n",
"import torchvision.transforms as transforms\n",
"\n",
"def VGG16_predict(img_path):\n",
" '''\n",
" Use pre-trained VGG-16 model to obtain index corresponding to \n",
" predicted ImageNet class for image at specified path\n",
" \n",
" Args:\n",
" img_path: path to an image\n",
" \n",
" Returns:\n",
" Index corresponding to VGG-16 model's prediction\n",
" '''\n",
" transform=transforms.Compose([\n",
" transforms.Resize((224,224)),\n",
" transforms.ToTensor(),\n",
" transforms.Normalize(mean=[0.485, 0.456, 0.406],\n",
" std=[0.229, 0.224, 0.225])])\n",
"\n",
" ## TODO: Complete the function.\n",
" ## Load and pre-process an image from the given img_path\n",
" ## Return the *index* of the predicted class for that image\n",
" im=Image.open(img_path).convert(\"RGB\")\n",
" im=transform(im)\n",
" VGG16.eval()\n",
" out= VGG16(im.unsqueeze(0)) # predicted class index\n",
" _,out=torch.max(out, 1)\n",
" return out[0].numpy()\n",
"print(VGG16_predict(\"images/Labrador_retriever_06457.jpg\") ) "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### (IMPLEMENTATION) Write a Dog Detector\n",
"\n",
"While looking at the [dictionary](https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a), you will notice that the categories corresponding to dogs appear in an uninterrupted sequence and correspond to dictionary keys 151-268, inclusive, to include all categories from `'Chihuahua'` to `'Mexican hairless'`. Thus, in order to check to see if an image is predicted to contain a dog by the pre-trained VGG-16 model, we need only check if the pre-trained model predicts an index between 151 and 268 (inclusive).\n",
"\n",
"Use these ideas to complete the `dog_detector` function below, which returns `True` if a dog is detected in an image (and `False` if not)."
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
"### returns \"True\" if a dog is detected in the image stored at img_path\n",
"def dog_detector(img_path):\n",
" ## TODO: Complete the function\n",
" index=VGG16_predict(img_path=img_path)\n",
" if index>= 151 and index<=268 :\n",
" return True\n",
" return False"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### (IMPLEMENTATION) Assess the Dog Detector\n",
"\n",
"__Question 2:__ Use the code cell below to test the performance of your `dog_detector` function. \n",
"- What percentage of the images in `human_files_short` have a detected dog? \n",
"- What percentage of the images in `dog_files_short` have a detected dog?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"__Answer:__ \n",
"0 percentage of the images in human_files_short have a detected dog\n",
"100 percentage of the images in human_files_short have a detected dog"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 percentage of the images in human_files_short have a detected dog\n",
"100 percentage of the images in human_files_short have a detected dog\n"
]
}
],
"source": [
"### TODO: Test the performance of the dog_detector function\n",
"### on the images in human_files_short and dog_files_short.\n",
"\n",
"Oh_these_humans=sum([True == dog_detector(image) for image in human_files_short])\n",
"BowWowDogs=sum([True == dog_detector(image) for image in dog_files_short])\n",
"print(Oh_these_humans,\"percentage of the images in human_files_short have a detected dog\")\n",
"print(BowWowDogs,\"percentage of the images in human_files_short have a detected dog\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We suggest VGG-16 as a potential network to detect dog images in your algorithm, but you are free to explore other pre-trained networks (such as [Inception-v3](http://pytorch.org/docs/master/torchvision/models.html#inception-v3), [ResNet-50](http://pytorch.org/docs/master/torchvision/models.html#id3), etc). Please use the code cell below to test other pre-trained PyTorch models. If you decide to pursue this _optional_ task, report performance on `human_files_short` and `dog_files_short`."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Answer:\n",
" On AlexNet:\n",
" 1 percentage of the images in human_files_short have a detected dog\n",
" 99 percentage of the images in human_files_short have a detected dog"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"### (Optional) \n",
"### TODO: Report the performance of another pre-trained network.\n",
"### Feel free to use as many code cells as needed.\n",
"\n",
"# define the resnet\n",
"AlexNet = models.alexnet(pretrained=True)\n",
"\n",
"# check if CUDA is available\n",
"use_cuda = torch.cuda.is_available()\n",
"\n",
"# move model to GPU if CUDA is available\n",
"if use_cuda:\n",
" AlexNet = AlexNet.cuda()\n",
"\n",
"def AlexNet_predict(img_path):\n",
" '''\n",
" Use pre-trained AlexNet model to obtain index corresponding to \n",
" predicted ImageNet class for image at specified path\n",
" \n",
" Args:\n",
" img_path: path to an image\n",
" \n",
" Returns:\n",
" Index corresponding to ResNet model's prediction\n",
" '''\n",
" transform=transforms.Compose([\n",
" transforms.Resize((224,224)),\n",
" transforms.ToTensor(),\n",
" transforms.Normalize(mean=[0.485, 0.456, 0.406],\n",
" std=[0.229, 0.224, 0.225])])\n",
"\n",
" ## TODO: Complete the function.\n",
" ## Load and pre-process an image from the given img_path\n",
" ## Return the *index* of the predicted class for that image\n",
" im=Image.open(img_path).convert(\"RGB\")\n",
" im=transform(im)\n",
" AlexNet.eval()\n",
" out= AlexNet(im.unsqueeze(0)) # predicted class index\n",
" _,out=torch.max(out, 1)\n",
" return out[0].numpy()\n",
"def dog_detector_AlexNet(img_path):\n",
" ## TODO: Complete the function\n",
" index=AlexNet_predict(img_path=img_path)\n",
" if index>= 151 and index<=268 :\n",
" return True\n",
" return False\n",
"Oh_these_humans=sum([True == dog_detector_AlexNet(image) for image in human_files_short])\n",
"BowWowDogs=sum([True == dog_detector_AlexNet(image) for image in dog_files_short])\n",
"print(Oh_these_humans,\"percentage of the images in human_files_short have a detected dog\")\n",
"print(BowWowDogs,\"percentage of the images in human_files_short have a detected dog\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---\n",
"<a id='step3'></a>\n",
"## Step 3: Create a CNN to Classify Dog Breeds (from Scratch)\n",
"\n",
"Now that we have functions for detecting humans and dogs in images, we need a way to predict breed from images. In this step, you will create a CNN that classifies dog breeds. You must create your CNN _from scratch_ (so, you can't use transfer learning _yet_!), and you must attain a test accuracy of at least 10%. In Step 4 of this notebook, you will have the opportunity to use transfer learning to create a CNN that attains greatly improved accuracy.\n",
"\n",
"We mention that the task of assigning breed to dogs from images is considered exceptionally challenging. To see why, consider that *even a human* would have trouble distinguishing between a Brittany and a Welsh Springer Spaniel. \n",
"\n",
"Brittany | Welsh Springer Spaniel\n",
"- | - \n",
"<img src=\"images/Brittany_02625.jpg\" width=\"100\"> | <img src=\"images/Welsh_springer_spaniel_08203.jpg\" width=\"200\">\n",
"\n",
"It is not difficult to find other dog breed pairs with minimal inter-class variation (for instance, Curly-Coated Retrievers and American Water Spaniels). \n",
"\n",
"Curly-Coated Retriever | American Water Spaniel\n",
"- | -\n",
"<img src=\"images/Curly-coated_retriever_03896.jpg\" width=\"200\"> | <img src=\"images/American_water_spaniel_00648.jpg\" width=\"200\">\n",
"\n",
"\n",
"Likewise, recall that labradors come in yellow, chocolate, and black. Your vision-based algorithm will have to conquer this high intra-class variation to determine how to classify all of these different shades as the same breed. \n",
"\n",
"Yellow Labrador | Chocolate Labrador | Black Labrador\n",
"- | -\n",
"<img src=\"images/Labrador_retriever_06457.jpg\" width=\"150\"> | <img src=\"images/Labrador_retriever_06455.jpg\" width=\"240\"> | <img src=\"images/Labrador_retriever_06449.jpg\" width=\"220\">\n",
"\n",
"We also mention that random chance presents an exceptionally low bar: setting aside the fact that the classes are slightly imabalanced, a random guess will provide a correct answer roughly 1 in 133 times, which corresponds to an accuracy of less than 1%. \n",
"\n",
"Remember that the practice is far ahead of the theory in deep learning. Experiment with many different architectures, and trust your intuition. And, of course, have fun!\n",
"\n",
"### (IMPLEMENTATION) Specify Data Loaders for the Dog Dataset\n",
"\n",
"Use the code cell below to write three separate [data loaders](http://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader) for the training, validation, and test datasets of dog images (located at `dog_images/train`, `dog_images/valid`, and `dog_images/test`, respectively). You may find [this documentation on custom datasets](http://pytorch.org/docs/stable/torchvision/datasets.html) to be a useful resource. If you are interested in augmenting your training and/or validation data, check out the wide variety of [transforms](http://pytorch.org/docs/stable/torchvision/transforms.html?highlight=transform)!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CUDA is not available. Training on CPU ...\n",
"Num training images: 6680\n",
"Num test images: 836\n",
"Num valid images: 835\n"
]
}
],
"source": [
"import os\n",
"import torch\n",
"from torchvision import datasets, transforms\n",
"import numpy as np\n",
"from PIL import ImageFile \n",
"ImageFile.LOAD_TRUNCATED_IMAGES = True\n",
"train_on_gpu = torch.cuda.is_available()\n",
"\n",
"if not train_on_gpu:\n",
" print('CUDA is not available. Training on CPU ...')\n",
"else:\n",
" print('CUDA is available! Training on GPU ...')\n",
"### TODO: Write data loaders for training, validation, and test sets\n",
"## Specify appropriate transforms, and batch_sizes\n",
"##Directories\n",
"data_dir = '/data/dog_images/'\n",
"train_dir = os.path.join(data_dir, 'train/')\n",
"test_dir = os.path.join(data_dir, 'test/')\n",
"valid_dir= os.path.join(data_dir, 'valid/')\n",
"\n",
"##Transforming data so all have same size(224)\n",
"data_transform = transforms.Compose([transforms.Resize((224,224)), \n",
" transforms.CenterCrop(224),\n",
" transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406],\n",
" std=[0.229, 0.224, 0.225])])\n",
"##Transforming data so all have same size(224)\n",
"train_data_transform = transforms.Compose([transforms.Resize((224,224)),\n",
" transforms.RandomCrop((224,224)),\n",
" transforms.RandomHorizontalFlip(),\n",
" transforms.RandomRotation(10),\n",
" transforms.ToTensor(),\n",
" transforms.Normalize(mean=[0.485, 0.456, 0.406],\n",
" std=[0.229, 0.224, 0.225])])\n",
"\n",
"train_data = datasets.ImageFolder(train_dir, transform=train_data_transform)\n",
"test_data = datasets.ImageFolder(test_dir, transform=data_transform)\n",
"valid_data= datasets.ImageFolder(valid_dir, transform=data_transform)\n",
"print('Num training images: ', len(train_data))\n",
"print('Num test images: ', len(test_data))\n",
"print('Num valid images: ', len(valid_data))\n",
"\n",
"# define dataloader parameters\n",
"batch_size = 126\n",
"num_workers=0\n",
"\n",
"# prepare data loaders\n",
"train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, \n",
" num_workers=num_workers,shuffle=True)\n",
"valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=batch_size, \n",
" num_workers=num_workers)\n",
"test_loader = torch.utils.data.DataLoader(test_data, batch_size=batch_size, \n",
" num_workers=num_workers)\n",
"loaders = {\n",
" 'train': train_loader,\n",
" 'valid': valid_loader,\n",
" 'test': test_loader\n",
"}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Question 3:** Describe your chosen procedure for preprocessing the data. \n",
"- How does your code resize the images (by cropping, stretching, etc)? What size did you pick for the input tensor, and why?\n",
"- Did you decide to augment the dataset? If so, how (through translations, flips, rotations, etc)? If not, why not?\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Answer**:\n",
"Crop the given PIL Image to random size and aspect ratio. And then resize it 224. I picked it ebcause most of the CNN work better with this size.:P"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### (IMPLEMENTATION) Model Architecture\n",
"\n",
"Create a CNN to classify dog breed. Use the template in the code cell below."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import torch.nn as nn\n",
"import torch.nn.functional as F\n",
"import numpy as np\n",
"\n",
"# define the CNN architecture\n",
"class Net(nn.Module):\n",
" ### TODO: choose an architecture, and complete the class\n",
" def __init__(self):\n",
" super(Net, self).__init__()\n",
" \n",
" ## Define layers of a CNN\n",
" # convolutional layer (sees 224x224x3 image tensor)\n",
" self.conv_0=nn.Conv2d(3,32,3, stride=2,padding=1) \n",
" # convolutional layer (sees 56x56x16 image tensor) \n",
" self.conv_1=nn.Conv2d(32,64,3, stride=2,padding=1)\n",
" # convolutional layer (sees 28x28x32 image tensor)\n",
" self.conv_2=nn.Conv2d(64,128,3,padding=1)\n",
" \n",
" self.pool=nn.MaxPool2d(2,2)\n",
" # linear layer (28 * 28 * 64 -> 512)\n",
" self.fc1 = nn.Linear(7*7*128, 512)\n",
" self.fc15 = nn.Linear(512, 512)\n",
" # linear layer (512 -> 133)\n",
" self.fc2 = nn.Linear(512,133)\n",
" self.dropout=nn.Dropout(0.55 )\n",
" def forward(self, x):\n",
" ## Define forward behavior\n",
" x = self.pool(F.relu(self.conv_0(x)))\n",
" x = self.dropout(x)\n",
" \n",
" x = self.pool(F.relu(self.conv_1(x)))\n",
" x = self.dropout(x)\n",
" \n",
" x = self.pool(F.relu(self.conv_2(x)))\n",
" x = self.dropout(x)\n",
" # flatten image input\n",
" x = x.view(-1, 7*7*128)\n",
" \n",
" # add 1st hidden layer, with relu activation function\n",
" x = F.relu(self.fc1(x))\n",
" x = self.dropout(x)\n",
" \n",
" # add 2nd hidden layer, with relu activation function\n",
" x = self.fc2(x)\n",
" return x\n",
"#-#-# You so NOT have to modify the code below this line. #-#-#\n",
"model_scratch = Net()\n",
"\n",
"# move tensors to GPU if CUDA is available\n",
"if train_on_gpu:\n",
" model_scratch.cuda()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"__Question 4:__ Outline the steps you took to get to your final CNN architecture and your reasoning at each step. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"__Answer:__ \n",
"we first pass a 224x224 image to 3 conv layers halving the depth by using max pool layers.(shown in comments in the code)\n",
"we pick thius because theese are the most common ones in alreday existing networks\n",
"then we have two dense layers for final prediction with 133 dog classes\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### (IMPLEMENTATION) Specify Loss Function and Optimizer\n",
"\n",
"Use the next code cell to specify a [loss function](http://pytorch.org/docs/stable/nn.html#loss-functions) and [optimizer](http://pytorch.org/docs/stable/optim.html). Save the chosen loss function as `criterion_scratch`, and the optimizer as `optimizer_scratch` below."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"import torch.optim as optim\n",
"\n",
"### TODO: select loss function\n",
"criterion_scratch = nn.CrossEntropyLoss()\n",
"\n",
"### TODO: select optimizer\n",
"optimizer_scratch = optim.SGD(model_scratch.parameters(), lr=0.01)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### (IMPLEMENTATION) Train and Validate the Model\n",
"\n",
"Train and validate your model in the code cell below. [Save the final model parameters](http://pytorch.org/docs/master/notes/serialization.html) at filepath `'model_scratch.pt'`."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"def train(n_epochs, loaders, model, optimizer, criterion, use_cuda, save_path):\n",
" \"\"\"returns trained model\"\"\"\n",
" # initialize tracker for minimum validation loss\n",
" valid_loss_min = np.Inf \n",
" \n",
" for epoch in range(1, n_epochs+1):\n",
" # initialize variables to monitor training and validation loss\n",
" train_loss = 0.0\n",
" valid_loss = 0.0\n",
" \n",
" ###################\n",
" # train the model #\n",
" ###################\n",
" model.train()\n",
" for batch_idx, (data, target) in enumerate(loaders['train']):\n",
" \n",
" # move to GPU\n",
" if use_cuda:\n",
" \n",
" data, target = data.cuda(), target.cuda()\n",
" optimizer.zero_grad()\n",
" output = model(data)\n",
" loss = criterion(output, target)\n",
" \n",
" loss.backward()\n",
" \n",
" optimizer.step()\n",
" \n",
" ## find the loss and update the model parameters accordingly\n",
" ## record the average training loss, using something like|\n",
" train_loss = train_loss + ((1 / (batch_idx + 1)) * (loss.data - train_loss))\n",
" if batch_idx % 20 ==0:\n",
" print('batch: {} \\tTraining Loss: {:.6f}'.format(batch_idx, train_loss))\n",
" ###################### \n",
" # validate the model #\n",
" ######################\n",
" model.eval()\n",
" for batch_idx, (data, target) in enumerate(loaders['valid']):\n",
" # move to GPU\n",
" if use_cuda:\n",
" data, target = data.cuda(), target.cuda()\n",
" ## update the average validation loss\n",
"\n",
" output = model(data)\n",
" loss = criterion(output, target)\n",
" valid_loss = valid_loss + ((1 / (batch_idx + 1)) * (loss.data - valid_loss))\n",
" \n",
" print('Epoch: {} \\tTraining Loss: {:.6f} \\tValidation Loss: {:.6f}'.format(\n",
" epoch, \n",
" train_loss,\n",
" valid_loss\n",
" ))\n",
" ## TODO: save the model if validation loss has decreased\n",
" if valid_loss <= valid_loss_min:\n",
" print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format(\n",
" valid_loss_min,\n",
" valid_loss))\n",
" torch.save(model.state_dict(),save_path)\n",
" valid_loss_min = valid_loss\n",
" # return trained model\n",
" return model\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"batch: 0 \tTraining Loss: 4.084324\n",
"batch: 20 \tTraining Loss: 3.916208\n",
"batch: 40 \tTraining Loss: 3.908025\n",
"Epoch: 1 \tTraining Loss: 3.885898 \tValidation Loss: 4.124440\n",
"Validation loss decreased (inf --> 4.124440). Saving model ...\n",
"batch: 0 \tTraining Loss: 4.169292\n",
"batch: 20 \tTraining Loss: 3.924358\n",
"batch: 40 \tTraining Loss: 3.923496\n",
"Epoch: 2 \tTraining Loss: 3.887824 \tValidation Loss: 4.138239\n",
"batch: 0 \tTraining Loss: 3.951047\n",
"batch: 20 \tTraining Loss: 3.900497\n",
"batch: 40 \tTraining Loss: 3.894909\n",
"Epoch: 3 \tTraining Loss: 3.905755 \tValidation Loss: 4.112343\n",
"Validation loss decreased (4.124440 --> 4.112343). Saving model ...\n",
"batch: 0 \tTraining Loss: 3.885119\n",
"batch: 20 \tTraining Loss: 3.931987\n",
"batch: 40 \tTraining Loss: 3.925220\n",
"Epoch: 4 \tTraining Loss: 3.923420 \tValidation Loss: 4.179267\n",
"batch: 0 \tTraining Loss: 4.154625\n",
"batch: 20 \tTraining Loss: 3.916139\n",
"batch: 40 \tTraining Loss: 3.898925\n",
"Epoch: 5 \tTraining Loss: 3.870364 \tValidation Loss: 4.135635\n",
"batch: 0 \tTraining Loss: 4.169271\n",
"batch: 20 \tTraining Loss: 3.859211\n",
"batch: 40 \tTraining Loss: 3.878356\n",
"Epoch: 6 \tTraining Loss: 3.888366 \tValidation Loss: 4.141392\n",
"batch: 0 \tTraining Loss: 3.996964\n",
"batch: 20 \tTraining Loss: 3.875732\n",
"batch: 40 \tTraining Loss: 3.878785\n",
"Epoch: 7 \tTraining Loss: 3.869841 \tValidation Loss: 4.093406\n",
"Validation loss decreased (4.112343 --> 4.093406). Saving model ...\n",
"batch: 0 \tTraining Loss: 3.784305\n",
"batch: 20 \tTraining Loss: 3.894254\n",
"batch: 40 \tTraining Loss: 3.903770\n",
"Epoch: 8 \tTraining Loss: 3.927099 \tValidation Loss: 4.229050\n",
"batch: 0 \tTraining Loss: 4.224390\n",
"batch: 20 \tTraining Loss: 3.911880\n"
]
}
],
"source": [
"\n",
"model_scratch = train(10, loaders, model_scratch, optimizer_scratch, \n",
" criterion_scratch, train_on_gpu, 'model_scratch.pt')\n",
"\n",
"# load the model that got the best validation accuracy\n",
"model_scratch.load_state_dict(torch.load('model_scratch.pt'))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### (IMPLEMENTATION) Test the Model\n",
"\n",
"Try out your model on the test dataset of dog images. Use the code cell below to calculate and print the test loss and accuracy. Ensure that your test accuracy is greater than 10%."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Test Loss: 4.106568\n",
"\n",
"\n",
"Test Accuracy: 9% (76/836)\n"
]
}
],
"source": [
"def test(loaders, model, criterion, use_cuda):\n",
"\n",
" # monitor test loss and accuracy\n",
" test_loss = 0.\n",
" correct = 0.\n",
" total = 0.\n",
"\n",
" model.eval()\n",
" for batch_idx, (data, target) in enumerate(loaders['test']):\n",
" # move to GPU\n",
" if use_cuda:\n",
" data, target = data.cuda(), target.cuda()\n",
" # forward pass: compute predicted outputs by passing inputs to the model\n",
" output = model(data)\n",
" # calculate the loss\n",
" loss = criterion(output, target)\n",
" # update average test loss \n",
" test_loss = test_loss + ((1 / (batch_idx + 1)) * (loss.data - test_loss))\n",
" # convert output probabilities to predicted class\n",
" pred = output.data.max(1, keepdim=True)[1]\n",
" # compare predictions to true label\n",
" correct += np.sum(np.squeeze(pred.eq(target.data.view_as(pred))).cpu().numpy())\n",
" total += data.size(0)\n",
" \n",
" print('Test Loss: {:.6f}\\n'.format(test_loss))\n",
"\n",
" print('\\nTest Accuracy: %2d%% (%2d/%2d)' % (\n",
" 100. * correct / total, correct, total))\n",
"if train_on_gpu:\n",
" model_scratch.load_state_dict(torch.load('model_scratch.pt'))\n",
"else:\n",
" # load the model that got the best validation accuracy\n",
" model_scratch.load_state_dict(torch.load('model_scratch.pt', map_location=lambda storage, loc: storage))\n",
"# call test function \n",
"test(loaders, model_scratch, criterion_scratch, train_on_gpu)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---\n",
"<a id='step4'></a>\n",
"## Step 4: Create a CNN to Classify Dog Breeds (using Transfer Learning)\n",
"\n",
"You will now use transfer learning to create a CNN that can identify dog breed from images. Your CNN must attain at least 60% accuracy on the test set.\n",
"\n",
"### (IMPLEMENTATION) Specify Data Loaders for the Dog Dataset\n",
"\n",
"Use the code cell below to write three separate [data loaders](http://pytorch.org/docs/master/data.html#torch.utils.data.DataLoader) for the training, validation, and test datasets of dog images (located at `dogImages/train`, `dogImages/valid`, and `dogImages/test`, respectively). \n",
"\n",
"If you like, **you are welcome to use the same data loaders from the previous step**, when you created a CNN from scratch."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"## TODO: Specify data loaders\n",
"new_loaders=loaders"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### (IMPLEMENTATION) Model Architecture\n",
"\n",
"Use transfer learning to create a CNN to classify dog breed. Use the code cell below, and save your initialized model as the variable `model_transfer`."
]
},
{
"cell_type": "markdown",