-
Notifications
You must be signed in to change notification settings - Fork 5
/
generate_result.py
205 lines (179 loc) · 7.77 KB
/
generate_result.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import argparse
import concurrent.futures
import datetime
import os
from tqdm import tqdm
from collections import defaultdict
from glob import glob
from os.path import join, isdir, isfile, relpath
from typing import List, Dict
import jsonlines
import pandas as pd
from evaluation.configs import AppConfig
from evaluation.task import Evaluation_Task
from evaluation.definition import detect_answer_test
# from generate_result_single import *
def find_all_task_files(all_task_config_path) -> List[str]:
# print(type(all_task_config_path), all_task_config_path)
tasks = []
for task in all_task_config_path:
if isdir(task):
tasks += [relpath(path, ".") for path in glob(join(task, "**/*.yaml"), recursive=True)]
elif isfile(task):
tasks.append(task)
else:
print(f"'{task}' is not a valid file or directory, ignored.")
return tasks
def find_all_traces_files(traces_path_fold) -> Dict[str, Dict[str, str]]:
# print(type(all_task_config_path), all_task_config_path)
traces_path = os.listdir(traces_path_fold)
traces = {}
for trace in traces_path:
app_name = trace.split('_')[0]
app_id = trace.split('_')[1]
task_id = f"{app_name}_{app_id}"
trace_root = os.path.join(traces_path_fold, trace)
trace_file = os.path.join(trace_root, "traces", "trace.jsonl")
xml_path = os.path.join(trace_root, "xml")
trace_item = {
"task_id": task_id,
"trace_file": trace_file,
"xml_path": xml_path,
"trace_root": trace_root
}
traces[task_id] = trace_item
return traces
def evaluate_all_tasks(tasks: List[Evaluation_Task]):
for task in tqdm(tasks):
try:
task.evaluate()
del task
except Exception as e:
import traceback
print(traceback.format_exc())
def evaluate_input_dir(input_dir, task_yamls, create_time, args):
test_name = input_dir.split('/')[-1]
output_root_dir = os.path.join(args.output_folder, test_name + "_" + create_time)
if not os.path.exists(output_root_dir):
os.makedirs(output_root_dir)
task_files = find_all_task_files(task_yamls)
traces = find_all_traces_files(input_dir)
tasks = []
print("> Loading task configs")
for app_task_config_path in task_files:
app_config = AppConfig(app_task_config_path, output_dir=output_root_dir)
app_task = Evaluation_Task(app_config, traces, args, detail=True)
print(f" Evaluation_Task '{app_task.name}' loaded from config {app_task_config_path}")
tasks.append(app_task)
print(f"> Successfully load {len(tasks)} task{'s' if len(tasks) > 1 else ''}")
evaluate_all_tasks(tasks)
def output_to_excel(args):
output_df = pd.DataFrame()
base_folder = args.output_folder
outputs = os.listdir(base_folder)
for output in outputs:
output_folder = os.path.join(base_folder, output)
agent_name = output.split("_2024")[0]
if not os.path.exists(os.path.join(output_folder, "total.jsonl")):
continue
with jsonlines.open(os.path.join(output_folder, "total.jsonl")) as f:
dict = defaultdict(list)
total_num = 0
for line in f:
# total = line["Total"]
# App = line["App"]
for key, value in line.items():
if key == "App":
dict["App"].append(1)
elif key == "Total":
dict[key].append(value)
total_num += value
elif "Sum_" in key or key == "Complete_Correct":
dict[key].append(value)
tt_correct = sum(dict["Complete_Correct"])
output_dict = {}
output_dict["agent_name"] = agent_name
for key, value in dict.items():
if key == "App":
output_dict[key] = len(value)
elif key == "Total":
output_dict[key] = sum(value)
elif key == "Sum_RRR":
if tt_correct == 0:
output_dict[key] = 0
else:
output_dict[key] = 100 * sum(value) / tt_correct
elif key == "Complete_Correct" or "Sum_" in key:
output_dict[key] = 100 * sum(value) / args.total_num
# else:
# output_dict[key] = sum(value) / total_num
print(output_dict)
# output_dict["Acc"] = output_dict["Complete_Correct"] / output_dict["Total"]
output_dict["Acc"] = tt_correct / total_num
output_dict["correct"] = tt_correct
output_df = output_df._append(output_dict, ignore_index=True)
output_df.to_excel(args.output_excel)
print(output_df)
def parse_args():
parser = argparse.ArgumentParser(add_help=False)
group = parser.add_argument_group("evaluation", "Evaluation configurations")
group.add_argument("--input_folder", type=str, default="logs/evaluation")
group.add_argument("--output_folder", type=str, default="outputs")
group.add_argument("--output_excel", type=str, default="output.xlsx")
group.add_argument("--total_num", type=int, default=138)
group.add_argument("--judge_model", type=str, default="glm4")
group.add_argument("--api_base", type=str, default="")
group.add_argument("--api_key", type=str, default="439150ab4245c97b3a99bf11671503ac.frQoavSHwVINb8Fn")
args = parser.parse_args()
return args
def main():
args = parse_args()
assert args.judge_model in ["glm4", "gpt-4o-2024-05-13"], "We only support glm4 or gpt-4o for judge model"
detect_answer_test(args)
task_yamls = os.listdir('evaluation/config')
task_yamls = ["evaluation/config/" + i for i in task_yamls if i.endswith(".yaml")]
create_time = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
input_folder = args.input_folder
input_dirs = [os.path.join(input_folder, input_dir) for input_dir in os.listdir(input_folder)]
if not os.path.exists(args.output_folder):
os.makedirs(args.output_folder)
already_output = os.listdir(args.output_folder)
agent_list = []
for output in already_output:
agent_name = output.split("_2024")[0]
agent_list.append(agent_name)
for input_dir in input_dirs:
if "emulator_output.txt" in input_dir:
continue
for agent in agent_list:
if agent == input_dir.split('/')[-1]:
input_dirs.remove(input_dir)
break
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
futures = [executor.submit(evaluate_input_dir, input_dir, task_yamls, create_time, args) for input_dir in
input_dirs]
for future in concurrent.futures.as_completed(futures):
try:
future.result()
except Exception as exc:
import traceback
traceback.print_exc()
print(f'Generated an exception: {exc}')
output_to_excel(args)
df = pd.DataFrame()
files = os.listdir(args.output_folder)
for file in files:
output_folder = os.path.join(args.output_folder, file)
agent_name = file.split("_2024")[0]
if not os.path.exists(os.path.join(output_folder, "total.jsonl")):
continue
output_dict = {"agent_name": agent_name}
with jsonlines.open(os.path.join(output_folder, "total.jsonl")) as f:
for line in f:
app = line["App"]
correct = line["Complete_Correct"]
output_dict[app] = correct
df = df._append(output_dict, ignore_index=True)
df.to_excel(args.output_excel.replace(".xlsx", "_detail.xlsx"))
if __name__ == "__main__":
main()