-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
84 lines (68 loc) · 2.98 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import argparse
import torch
import torch.nn as nn
import numpy as np
import random
import json
import torch.optim as optim
from torch.optim.lr_scheduler import ExponentialLR
from pathlib import Path as P
import os
from utils import *
from loader import *
import warnings
warnings.filterwarnings("ignore")
# Configuration and hyper-parameters
parser = argparse.ArgumentParser() # _new modify the learning rate and Adam betas
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--n_epochs', type=int, default=1000)
parser.add_argument('--z_dim', type=int, default=128)
parser.add_argument('--hidden_dim', type=int, default=128)
parser.add_argument('--display_step', type=int, default=5)
parser.add_argument('--d_lr', type=float, default=2e-4) # lr = 2e-4 / 1e-5 for ori with mnist
parser.add_argument('--g_lr', type=float, default=1e-4)
parser.add_argument('--checkpoint_dir', type=str, default='checkpoint')
parser.add_argument('--checkpoint_path', type=str, default=None)
parser.add_argument('--model', type=str, default='gan')
parser.add_argument('--dataset', type=str, default='MNIST')
parser.add_argument('--seed', type=int, default=28)
parser.add_argument('--device', type=int, default=7)
args = parser.parse_args()
print(args)
# Seed for reproduction
SEED = args.seed
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
os.environ["CUDA_VISIBLE_DEVICES"] = '{}'.format(args.device)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
batch_size, dataset, z_dim, model_type = args.batch_size, args.dataset, args.z_dim, args.model
checkpoint_dir = P(args.checkpoint_dir)
checkpoint_dir.mkdir(exist_ok=True)
config_path = checkpoint_dir / 'config.json'
with config_path.open('w') as f:
json.dump(vars(args), f, indent=4, sort_keys=True)
args.channel = 1 if dataset == 'MNIST' else 3 if dataset == 'CIFAR10' else None
# Dataloader for training and validation
loader, val_loader = get_dataset(args)
# Models
discriminator, generator = get_model(args, device)
# Optimizer
optim_disc = optim.Adam(filter(lambda p: p.requires_grad, discriminator.parameters()), lr=args.d_lr, betas=(0.5, 0.999))
optim_gen = optim.Adam(generator.parameters(), lr=args.g_lr, betas=(0.5, 0.999)) # betas (0.0, 0.9) / (0.5, 0.999)
# # use an exponentially decaying learning rate
# scheduler_d = optim.lr_scheduler.ExponentialLR(optim_disc, gamma=0.99)
# scheduler_g = optim.lr_scheduler.ExponentialLR(optim_gen, gamma=0.99)
# Loss function
criterion = nn.BCEWithLogitsLoss()
if __name__ == '__main__':
# Loading state_dicts
global_epoch = 1 # Start from epoch one
if args.checkpoint_path is not None:
global_epoch = load_checkpoint(args.checkpoint_path, discriminator, generator, optim_disc, optim_gen, 0)
# Training process
start_trainer(model_type, loader, val_loader, discriminator, generator, optim_disc, optim_gen, criterion, args,
device, global_epoch)
# Testing