-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscoring.py
495 lines (429 loc) · 19.2 KB
/
scoring.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
import numpy as np
import tensorflow as tf
import cv2 as cv
import pandas as pd
from copy import deepcopy
import matplotlib.pyplot as plt
import seaborn as sns
# import os
# os.chdir("/home/nicholas/Downloads/models/research/object_detection")
from object_detection.utils import visualization_utils as vis_util # here
from object_detection.utils import label_map_util # here
# from utils import visualization_utils as vis_util
# PATH_TO_MODEL = 'models/mobilenet/optimized_model.pb'
# PATH_TO_MODEL = 'models/inception/inception_frozen.pb'
PATH_TO_MODEL = 'models/resnet/resnet_frozen.pb'
PATH_TO_LABELS = 'models/mobilenet/data-inception-lionfish_lionfish_label_map.pbtxt'
NUM_CLASSES = 3
# some code from: https://towardsdatascience.com/evaluating-performance-of-an-object-detection-model-137a349c517b
def get_model_scores(pred_boxes):
"""Creates a dictionary of from model_scores to image ids.
Args:
pred_boxes (dict): dict of dicts of 'boxes' and 'scores'
Returns:
dict: keys are model_scores and values are image ids (usually filenames)
"""
model_score={}
for img_id, val in pred_boxes.items():
for score in val['scores']:
if score not in model_score.keys():
model_score[score]=[img_id]
else:
model_score[score].append(img_id)
return model_score
def calc_iou(gt_bbox, pred_bbox):
'''
This function takes the predicted bounding box and ground truth bounding box and
return the IoU ratio
'''
x_topleft_gt, y_topleft_gt, x_bottomright_gt, y_bottomright_gt = gt_bbox
x_topleft_p, y_topleft_p, x_bottomright_p, y_bottomright_p = pred_bbox
if x_topleft_gt > x_bottomright_gt:
print("\nWarning!!")
print("Ground Truth Bounding Box is not correct", x_topleft_gt, x_bottomright_gt, y_topleft_gt, y_bottomright_gt)
print("")
temp = x_topleft_gt
x_topleft_gt = x_bottomright_gt
x_bottomright_gt = temp
if y_topleft_gt > y_bottomright_gt:
print("\nWarning!!")
print("Ground Truth Bounding Box is not correct", x_topleft_gt, x_bottomright_gt, y_topleft_gt, y_bottomright_gt)
print("")
temp = y_topleft_gt
y_topleft_gt = y_bottomright_gt
y_bottomright_gt = temp
if (x_topleft_p > x_bottomright_p) or (y_topleft_p > y_bottomright_p):
raise AssertionError("Predicted Bounding Box is not correct", x_topleft_p, x_bottomright_p, y_topleft_p, y_bottomright_gt)
# if the GT bbox and predcited BBox do not overlap then iou=0
if (x_bottomright_gt < x_topleft_p):
# If bottom right of x-coordinate GT bbox is less than or above the top left of x coordinate of the predicted BBox
return 0.0
if (y_bottomright_gt < y_topleft_p): # If bottom right of y-coordinate GT bbox is less than or above the top left of y coordinate of the predicted BBox
return 0.0
if (x_topleft_gt > x_bottomright_p): # If bottom right of x-coordinate GT bbox is greater than or below the bottom right of x coordinate of the predcited BBox
return 0.0
if (y_topleft_gt > y_bottomright_p): # If bottom right of y-coordinate GT bbox is greater than or below the bottom right of y coordinate of the predcited BBox
return 0.0
GT_bbox_area = (x_bottomright_gt - x_topleft_gt + 1) * (y_bottomright_gt - y_topleft_gt + 1)
Pred_bbox_area = (x_bottomright_p - x_topleft_p + 1) * (y_bottomright_p - y_topleft_p + 1)
x_top_left = np.max([x_topleft_gt, x_topleft_p])
y_top_left = np.max([y_topleft_gt, y_topleft_p])
x_bottom_right = np.min([x_bottomright_gt, x_bottomright_p])
y_bottom_right = np.min([y_bottomright_gt, y_bottomright_p])
intersection_area = (x_bottom_right - x_top_left + 1) * (y_bottom_right - y_top_left + 1)
union_area = (GT_bbox_area + Pred_bbox_area - intersection_area)
return intersection_area / union_area
def calc_precision_recall(image_results):
"""Calculates precision and recall from the set of images
Args:
img_results (dict): dictionary formatted like:
{
'img_id1': {'true_pos': int, 'false_pos': int, 'false_neg': int},
'img_id2': ...
...
}
Returns:
tuple: of floats of (precision, recall)
"""
true_positive=0
false_positive=0
false_negative=0
for img_id, res in image_results.items():
true_positive +=res['true_positive']
false_positive += res['false_positive']
false_negative += res['false_negative']
try:
precision = true_positive/(true_positive+ false_positive)
except ZeroDivisionError:
precision=0.0
try:
recall = true_positive/(true_positive + false_negative)
except ZeroDivisionError:
recall=0.0
return (precision, recall)
def get_single_image_results(gt_boxes, pred_boxes, iou_thr):
"""Calculates number of true_pos, false_pos, false_neg from single batch of boxes.
Args:
gt_boxes (list of list of floats): list of locations of ground truth
objects as [xmin, ymin, xmax, ymax]
pred_boxes (dict): dict of dicts of 'boxes' (formatted like `gt_boxes`)
and 'scores'
iou_thr (float): value of IoU to consider as threshold for a
true prediction.
Returns:
dict: true positives (int), false positives (int), false negatives (int)
"""
all_pred_indices = range(len(pred_boxes))
all_gt_indices = range(len(gt_boxes))
if len(all_pred_indices) == 0:
tp = 0
fp = 0
fn = 0
return {'true_positive': tp, 'false_positive': fp, 'false_negative': fn}
if len(all_gt_indices) == 0:
tp = 0
fp = 0
fn = 0
return {'true_positive': tp, 'false_positive': fp, 'false_negative': fn}
gt_idx_thr = []
pred_idx_thr = []
ious = []
for ipb, pred_box in enumerate(pred_boxes):
for igb, gt_box in enumerate(gt_boxes):
iou = calc_iou(gt_box, pred_box)
if iou > iou_thr:
gt_idx_thr.append(igb)
pred_idx_thr.append(ipb)
ious.append(iou)
iou_sort = np.argsort(ious)[::1]
if len(iou_sort) == 0:
tp = 0
fp = 0
fn = 0
return {'true_positive': tp, 'false_positive': fp, 'false_negative': fn}
else:
gt_match_idx = []
pred_match_idx = []
for idx in iou_sort:
gt_idx = gt_idx_thr[idx]
pr_idx = pred_idx_thr[idx]
# If the boxes are unmatched, add them to matches
if (gt_idx not in gt_match_idx) and (pr_idx not in pred_match_idx):
gt_match_idx.append(gt_idx)
pred_match_idx.append(pr_idx)
tp = len(gt_match_idx)
fp = len(pred_boxes) - len(pred_match_idx)
fn = len(gt_boxes) - len(gt_match_idx)
return {'true_positive': tp, 'false_positive': fp, 'false_negative': fn}
def get_avg_precision_at_iou(gt_boxes, pred_bb, iou_thr=0.5):
model_scores = get_model_scores(pred_bb)
sorted_model_scores = sorted(model_scores.keys())
# Sort the predicted boxes in descending order (lowest scoring boxes first):
for img_id in pred_bb.keys():
arg_sort = np.argsort(pred_bb[img_id]['scores'])
pred_bb[img_id]['scores'] = np.array(pred_bb[img_id]['scores'])[arg_sort].tolist()
pred_bb[img_id]['boxes'] = np.array(pred_bb[img_id]['boxes'])[arg_sort].tolist()
pred_boxes_pruned = deepcopy(pred_bb)
precisions = []
recalls = []
model_thrs = []
img_results = {}
# Loop over model score thresholds and calculate precision, recall
for ithr, model_score_thr in enumerate(sorted_model_scores[:-1]):
# On first iteration, define img_results for the first time:
print("Model score : ", model_score_thr)
img_ids = gt_boxes.keys() if ithr == 0 else model_scores[model_score_thr]
# indent start
for img_id in img_ids:
gt_boxes_img = gt_boxes[img_id] # ['boxes'] # change here by adding boxes
box_scores = pred_boxes_pruned[img_id]['scores']
start_idx = 0
for score in box_scores:
if score <= model_score_thr:
pred_boxes_pruned[img_id]
start_idx += 1
else:
break
# Remove boxes, scores of lower than threshold scores:
pred_boxes_pruned[img_id]['scores'] = pred_boxes_pruned[img_id]['scores'][start_idx:]
pred_boxes_pruned[img_id]['boxes'] = pred_boxes_pruned[img_id]['boxes'][start_idx:]
# Recalculate image results for this image
# print(img_id)
# print(gt_boxes_img)
# print(pred_boxes_pruned[img_id]['boxes'])
img_results[img_id] = get_single_image_results(gt_boxes_img, pred_boxes_pruned[img_id]['boxes'], iou_thr=0.5)
# calculate precision and recall
prec, rec = calc_precision_recall(img_results)
precisions.append(prec)
recalls.append(rec)
model_thrs.append(model_score_thr)
# indent end
precisions = np.array(precisions)
recalls = np.array(recalls)
prec_at_rec = []
for recall_level in np.linspace(0.0, 1.0, 11):
try:
args = np.argwhere(recalls > recall_level).flatten()
prec = max(precisions[args])
print(recalls, "Recall")
print(recall_level, "Recall Level")
print(args, "Args")
print(prec, "precision")
except ValueError:
print("value error")
prec = 0.0
prec_at_rec.append(prec)
avg_prec = np.mean(prec_at_rec)
return {
'avg_prec': avg_prec,
'precisions': precisions,
'recalls': recalls,
'model_thrs': model_thrs}
def readData():
dataset = tf.data.TFRecordDataset(filenames=['test.record'])
image_array = []
id_array = []
coord_array = []
feature_array = []
data_iterator = iter(dataset)
zero = 0
single = 0
multiple = 0
total = 0
while True:
try:
raw_example = next(data_iterator)
parsed = tf.train.Example.FromString(raw_example.numpy())
# print(parsed)
raw_img = parsed.features.feature['image/encoded'].bytes_list.value[0]
format = parsed.features.feature['image/format'].bytes_list.value[0].decode("utf-8")
if format == "jpg":
image = tf.image.decode_jpeg(raw_img)
elif format == "png":
image = tf.image.decode_png(raw_img)
elif format == "bmp":
image = tf.image.decode_bmp(raw_img)
height = parsed.features.feature['image/height'].int64_list.value[0]
width = parsed.features.feature['image/width'].int64_list.value[0]
id = parsed.features.feature['image/source_id'].bytes_list.value[0].decode("utf-8").split("/")[-1]
label = parsed.features.feature['image/object/class/label'].int64_list.value
feature_tmp = parsed.features.feature['image/object/class/text'].bytes_list.value
feature = []
for feat in feature_tmp:
feature.append(feat.decode("utf-8"))
xmax = parsed.features.feature['image/object/bbox/xmax'].float_list.value
xmin = parsed.features.feature['image/object/bbox/xmin'].float_list.value
ymax = parsed.features.feature['image/object/bbox/ymax'].float_list.value
ymin = parsed.features.feature['image/object/bbox/ymin'].float_list.value
# print("id: ", id)
# print("label: ", label)
# print("feature: ", feature)
# print("xmax: ", xmax)
# print("ymax: ", ymax)
# print("xmin: ", xmin)
# print("ymin: ", ymin)
temp_coord_array = []
for i in range(0, len(feature)):
temp_coord_array.append([xmin[i]*300.0, ymin[i]*300.0, xmax[i]*300.0, ymax[i]*300.0])
coord_array.append(temp_coord_array)
id_array.append(str(id))
feature_array.append(feature)
# print("width: ", width)
# print("height: ", height)
image_array.append(image)
# plt.imshow(image)
# plt.axis('off')
# plt.show()
if len(feature) == 0:
zero += 1
elif len(feature) == 1:
single += 1
else:
multiple += 1
total += 1
# print(image)
except StopIteration:
break
print("")
print("zero: ", zero)
print("single: ", single)
print("multiple: ", multiple)
print("total: ", total)
return image_array, id_array, coord_array, feature_array
def lookup_labels(score_array, class_array, num):
# print(score_array)
# print(class_array)
# print(num)
# print("")
return_score_array = []
return_class_array = []
for i in range(0, num):
if class_array[i] == 1:
return_score_array.append(score_array[i])
return_class_array.append("Lionfish")
elif class_array[i] == 2:
return_score_array.append(score_array[i])
return_class_array.append("Diver")
else:
print("If reached, background data is in here")
return_score_array.append(score_array[i])
return_class_array.append("Background")
return return_score_array, return_class_array
def run_detection(detection_graph, image_array):
actual_detections = []
actual_scores = []
actual_labels = []
# Loading label map
# Label maps map indices to category names, so that when our convolution network predicts `5`, we know that this corresponds to `airplane`. Here we use internal utility functions, but anything that returns a dictionary mapping integers to appropriate string labels would be fine
label_map = label_map_util.load_labelmap(PATH_TO_LABELS) # here
categories = label_map_util.convert_label_map_to_categories(
label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories) # to here
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
# Detection
with detection_graph.as_default():
with tf.compat.v1.Session(graph=detection_graph, config=config) as sess:
i = 0
while i < len(image_array):
# # Read frame from camera
# ret, img = cap.read()
# cv.imwrite((str(i) + ".png"), cv.cvtColor(np.array(image_array[i]), cv.COLOR_BGR2RGB))
img = cv.cvtColor(np.array(image_array[i]), cv.COLOR_BGR2RGB)
img = cv.resize(img, (300, 300))
image_np = np.asarray(img) # .astype('uint8')
image_np_expanded = np.expand_dims(image_np, axis=0)
# Extract image tensor
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Extract detection boxes
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Extract detection scores
scores = detection_graph.get_tensor_by_name('detection_scores:0')
# Extract detection classes
classes = detection_graph.get_tensor_by_name('detection_classes:0')
# Extract number of detectionsd
num_detections = detection_graph.get_tensor_by_name(
'num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection. # here
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=4) # to here
# Display output
# cv.imshow('object detection', cv.resize(image_np, (800, 600)))
cv.imwrite(("out_images/" + str(i) + ".png"), cv.resize(image_np, (800, 600)))
# print(image_tensor)
# print(np.squeeze(boxes))
temp_detection = []
for box in np.squeeze(boxes):
if box[0] == 0 and box[1] == 0 and box[2] == 0 and box[3] == 0:
# nothing found
pass
else:
new_detection = [box[0]*300.0, box[1]*300.0, box[2]*300.0, box[3]*300.0]
temp_detection.append(new_detection)
actual_detections.append(temp_detection)
comp_score, comp_class = lookup_labels(np.squeeze(scores), np.squeeze(classes), len(temp_detection))
actual_scores.append(comp_score)
actual_labels.append(comp_class)
# print(np.squeeze(scores))
# print(classes)
# print(num_detections)
print("Curr pred # " + str(i))
i += 1
# print("\nActual Detections: ")
# print(actual_detections)
# print("\nActual Scores: ")
# print(actual_scores)
# print("\nActual labels: ")
# print(actual_labels)
return actual_detections, actual_scores, actual_labels
def clean_data(ground_id, ground_coord, ground_feature, det_coord, det_scores, det_feature):
ground_boxes = {}
pred_boxes = {}
for i in range(0, len(ground_id)):
# ground_boxes[ground_id[i]] = {}
# ground_boxes[ground_id[i]]["boxes"] = ground_coord[i]
# ground_boxes[ground_id[i]]["features"] = ground_feature[i]
ground_boxes[ground_id[i]] = ground_coord[i]
pred_boxes[ground_id[i]] = {}
pred_boxes[ground_id[i]]["boxes"] = det_coord[i]
pred_boxes[ground_id[i]]["features"] = det_feature[i]
pred_boxes[ground_id[i]]["scores"] = det_scores[i]
print("\nGround: ")
print(ground_boxes)
print("\nPredicted: ")
print(pred_boxes)
return ground_boxes, pred_boxes
if __name__== "__main__":
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.compat.v1.GraphDef()
with tf.io.gfile.GFile(PATH_TO_MODEL, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
image_array, id_array, coord_array, feature_array = readData()
# print("\nIds: ")
# print(id_array)
# print("\nCoords: ")
# print(coord_array)
# print("\nFeatures: ")
# print(feature_array)
detections, scores, labels = run_detection(detection_graph, image_array)
ground, predicted = clean_data(id_array, coord_array, feature_array, detections, scores, labels)
print("\nGround ")
print(ground)
print("\nPredicted ")
print(predicted)
precision_data = get_avg_precision_at_iou(ground, predicted)
print("\nPrecision data: ")
print(precision_data)