-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMain.py
244 lines (187 loc) · 8.28 KB
/
Main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import argparse
import numpy as np
import time
import math
import torch
import torch.optim as optim
if torch.cuda.is_available():
import torch.cuda as T
else:
import torch as T
import optuna
import Constants as C
from utils import Utils, metric
from utils.Dataset import Dataset as dataset
from Model.Models import Model
from tqdm import tqdm
import shutil
import os
def train_epoch(model, user_dl, adj_matrix, pop_encoding, optimizer, opt):
""" Epoch operation in training phase. """
model.train()
[pre, rec, map_, ndcg] = [[[] for i in range(4)] for j in range(4)]
for batch in tqdm(user_dl, mininterval=2, desc=' - (Training) ', leave=False):
optimizer.zero_grad()
""" prepare data """
user_idx, event_type, event_time, test_label = map(lambda x: x.to(opt.device), batch)
""" forward """
prediction, user_embeddings, pop_vector = model(user_idx, event_type, adj_matrix, pop_encoding, evaluation=False)
""" compute metric """
metric.pre_rec_top(pre, rec, map_, ndcg, prediction, test_label, event_type)
""" backward """
loss = Utils.type_loss(prediction, event_type, event_time, test_label, opt)
eta = 0.1 if C.DATASET not in C.eta_dict else C.eta_dict[C.DATASET]
if C.ABLATION != 'w/oNorm':
loss += Utils.l2_reg_loss(eta, model, event_type)
loss.backward(retain_graph=True)
""" update parameters """
optimizer.step()
results_np = map(lambda x: [np.around(np.mean(i), 5) for i in x], [pre, rec, map_, ndcg])
return results_np
def eval_epoch(model, user_valid_dl, adj_matrix, in_degree, opt):
""" Epoch operation in evaluation phase. """
model.eval()
[pre, rec, map_, ndcg] = [[[] for i in range(4)] for j in range(4)]
with torch.no_grad():
for batch in tqdm(user_valid_dl, mininterval=2,
desc=' - (Validation) ', leave=False):
""" prepare test data """
user_idx, event_type, event_time, test_label = map(lambda x: x.to(opt.device), batch)
""" forward """
prediction, _, _ = model(user_idx, event_type, adj_matrix, in_degree) # X = (UY+Z) ^ T
# valid_user_embeddings[user_idx] = users_embeddings
""" compute metric """
metric.pre_rec_top(pre, rec, map_, ndcg, prediction, test_label, event_type)
results_np = map(lambda x: [np.around(np.mean(i), 5) for i in x], [pre, rec, map_, ndcg])
return results_np
def train(model, data, optimizer, scheduler, opt):
""" Start training. """
best_ = [np.zeros(4) for i in range(4)]
(user_valid_dl, user_dl, adj_matrix, pop_encoding) = data
for epoch_i in range(opt.epoch):
print('[ Epoch', epoch_i + 1, ']')
np.set_printoptions(formatter={'float': '{: 0.5f}'.format})
# start = time.time()
[pre, rec, map_, ndcg] = train_epoch(model, user_dl, adj_matrix, pop_encoding, optimizer, opt)
# print('\r(Training) P@k:{pre}, R@k:{rec}, \n'
# '(Training)map@k:{map_}, ndcg@k:{ndcg}, '
# 'elapse:{elapse:3.3f} min'
# .format(elapse=(time.time() - start) / 60, pre=pre, rec=rec, map_=map_, ndcg=ndcg))
start = time.time()
[pre, rec, map_, ndcg] = eval_epoch(model, user_valid_dl, adj_matrix, pop_encoding, opt)
print('\r(Test) P@k:{pre}, R@k:{rec}, \n'
'(Test)map@k:{map_}, ndcg@k:{ndcg}, '
'elapse:{elapse:3.3f} min'
.format(elapse=(time.time() - start) / 60, pre=pre, rec=rec, map_=map_, ndcg=ndcg))
scheduler.step()
if best_[-1][1] < ndcg[1]: best_ = [pre, rec, map_, ndcg]
print('\n', '-' * 40, 'BEST', '-' * 40)
print('k', C.Ks)
print('\rP@k:{pre}, R@k:{rec}, \n'
'(Best)map@k:{map_}, ndcg@k:{ndcg}'
.format(pre=best_[0], rec=best_[1], map_=best_[2], ndcg=best_[3]))
print('-' * 40, 'BEST', '-' * 40, '\n')
return best_[-1][1]
def get_user_embeddings(model, user_dl, opt):
""" Epoch operation in training phase. """
valid_user_embeddings = torch.zeros((C.USER_NUMBER, opt.d_model), device='cuda:0')
for batch in tqdm(user_dl, mininterval=2, desc=' - (Computing user embeddings) ', leave=False):
""" prepare data """
user_idx, event_type, event_time, test_label = map(lambda x: x.to(opt.device), batch)
""" forward """
prediction, users_embeddings = model(event_type) # X = (UY+Z) ^ Tc
valid_user_embeddings[user_idx] = users_embeddings
return valid_user_embeddings
def pop_enc(in_degree, d_model):
"""
Input: batch*seq_len.
Output: batch*seq_len*d_model.
"""
pop_vec = torch.tensor(
[math.pow(10000.0, 2.0 * (i // 2) / d_model) for i in range(d_model)],
device=torch.device('cuda'), dtype=torch.float16)
result = in_degree.unsqueeze(-1) / pop_vec
result[:, 0::2] = torch.sin(result[:, 0::2])
result[:, 1::2] = torch.cos(result[:, 1::2])
return result
def main(trial):
""" Main function. """
parser = argparse.ArgumentParser()
opt = parser.parse_args()
opt.device = torch.device('cuda')
# # # optuna setting for tuning hyperparameters
# opt.n_layers = trial.suggest_int('n_layers', 2, 2)
# opt.d_inner_hid = trial.suggest_int('n_hidden', 512, 1024, 128)
# opt.d_k = trial.suggest_int('d_k', 512, 1024, 128)
# opt.d_v = trial.suggest_int('d_v', 512, 1024, 128)
# opt.n_head = trial.suggest_int('n_head', 1, 5, 1)
# # opt.d_rnn = trial.suggest_int('d_rnn', 128, 512, 128)
# opt.d_model = trial.suggest_int('d_model', 128, 1024, 128)
# opt.dropout = trial.suggest_uniform('dropout_rate', 0.5, 0.7)
# opt.smooth = trial.suggest_uniform('smooth', 1e-2, 1e-1)
# opt.lr = trial.suggest_uniform('learning_rate', 0.00008, 0.0002)
DATASET = C.DATASET
if DATASET == 'Foursquare':
beta, lambda_ = 0.3256, 0.4413 # 0.4, 0.4 # 0.4, 0.5 # 0.35, 0.5 # 0.5, 1
elif DATASET == 'Gowalla':
beta, lambda_ = 1.5, 4 # 0.38, 1 # 1.5, 4
elif DATASET == 'Yelp2018':
beta, lambda_ = 2.2977, 7.0342 # 1.8, 4 # 0.35, 1 # 1, 4
elif DATASET == 'douban-book':
beta, lambda_ = 0.9802, 0.7473
elif DATASET == 'ml-1M':
beta, lambda_ = 0.4645, 0.4098 # 0.9, 1
else:
beta, lambda_ = 0.5, 1
opt.beta, opt.lambda_ = beta, lambda_
opt.lr = 0.01
opt.epoch = 30
opt.n_layers = 1
opt.batch_size = 32
opt.dropout = 0.5
opt.smooth = 0.03
if DATASET == 'Foursquare': opt.d_model, opt.n_head = 768, 1
elif DATASET == 'Gowalla': opt.d_model, opt.n_head = 512, 1
elif DATASET == 'douban-book': opt.d_model, opt.n_head = 512, 1
elif DATASET == 'Yelp2018': opt.d_model, opt.n_head = 512, 1
elif DATASET == 'ml-1M': opt.d_model, opt.n_head = 512, 2
else: opt.d_model, opt.n_head = 512, 1
print('[Info] parameters: {}'.format(opt))
num_types = C.ITEM_NUMBER
num_user = C.USER_NUMBER
""" prepare model """
model = Model(
num_types=num_types,
d_model=opt.d_model,
n_layers=opt.n_layers,
n_head=opt.n_head,
dropout=opt.dropout,
device=opt.device
)
model = model.cuda()
""" loading data"""
ds = dataset()
print('[Info] Loading data...')
user_dl = ds.get_user_dl(opt.batch_size)
user_valid_dl = ds.get_user_valid_dl(opt.batch_size)
in_degree = ds.get_in_degree()
pop_encoding = pop_enc(in_degree, opt.d_model)
adj_matrix = ds.ui_adj
data = (user_valid_dl, user_dl, adj_matrix, pop_encoding)
""" optimizer and scheduler """
parameters = [
{'params': model.parameters(), 'lr': opt.lr},
]
optimizer = torch.optim.Adam(parameters) # , weight_decay=0.01
scheduler = optim.lr_scheduler.StepLR(optimizer, 10, gamma=0.5)
""" number of parameters """
num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('[Info] Number of parameters: {}'.format(num_params))
""" train the model """
return train(model, data, optimizer, scheduler, opt)
if __name__ == '__main__':
main(None)
# if you want to tune hyperparameters, please comment out main(None) and use the following code
# study = optuna.create_study(direction="maximize")
# n_trials = 100
# study.optimize(main, n_trials=n_trials)