diff --git a/src/ActorMonad.lagda.tex b/src/ActorMonad.lagda.tex index f510cda..9aa28fe 100644 --- a/src/ActorMonad.lagda.tex +++ b/src/ActorMonad.lagda.tex @@ -375,14 +375,13 @@ Agda implements a sort of subtyping for sizes, so computations of different sizes can still be composed via bind. -We don't give the constructors \AgdaRef[ActorMonad]{Return} and \AgdaRef[ActorMonad]{_∞>>=_} +We don't give the constructors \AgdaRef[ActorMonad]{Return} and \AgdaInductiveConstructor{∞>>=} the names return and >>=, since we want those names to refer to the type \AgdaRef[ActorMonad]{∞ActorM}. Instead, the actual return and >>= are defined as a separate functions -that wrap \AgdaRef[ActorMonad]{Return} and \AgdaRef[ActorMonad]{_∞>>=_}. +that wrap \AgdaRef[ActorMonad]{Return} and \AgdaInductiveConstructor{∞>>=}. \AgdaTarget{Return} -\AgdaTarget{_∞>>=_} \begin{code} Return : ∀ {A post} → (val : A) → ActorM i IS A (post val) post _∞>>=_ : ∀ {A B pre mid post} → (m : ∞ActorM i IS A pre mid) → diff --git a/src/Examples/Types.lagda.tex b/src/Examples/Types.lagda.tex index cae822e..3bf9a41 100644 --- a/src/Examples/Types.lagda.tex +++ b/src/Examples/Types.lagda.tex @@ -16,8 +16,10 @@ data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x -trivial = 4 ≡ 4 -definitional = (2 + 2) ≡ 4 +trivial : 4 ≡ 4 +trivial = refl +definitional : (2 + 2) ≡ 4 +definitional = refl \end{code} %