-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfcm_s1.py
115 lines (92 loc) · 5.29 KB
/
fcm_s1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
from matplotlib import pyplot as plt
import numpy as np
import cv2
def cost_function(membership_matrix, pixel_values, cluster_centers, fuzzy_num,average_pixel_values, alpha):
return np.sum(np.power(membership_matrix,fuzzy_num)*np.square(pixel_values-cluster_centers.T) + alpha*np.power(membership_matrix, fuzzy_num)*np.square(average_pixel_values-cluster_centers.T))
def class_means(membership_matrix, pixel_values, fuzzy_num, average_pixel_values,alpha) :
powered_membership_matrix = membership_matrix ** fuzzy_num
c_divergence = powered_membership_matrix.T@(pixel_values+alpha*average_pixel_values)
c_divergence = c_divergence.T/((1+alpha)*np.sum(powered_membership_matrix,axis = 0))
return c_divergence.T
def update_membership_values(pixel_values, cluster_centers, no_of_segments, fuzzy_num,average_pixel_values, alpha):
size_of_pixel_values = pixel_values.size
distance_matrix = np.zeros((size_of_pixel_values, no_of_segments))
for i in range(no_of_segments):
distance_matrix[:, i] = (pixel_values**2 - 2 * cluster_centers[i] * pixel_values + cluster_centers[i] ** 2).flatten()
distance_matrix[:, i] += alpha*(average_pixel_values**2 - 2 * cluster_centers[i] * average_pixel_values + cluster_centers[i] ** 2).flatten()
distance_matrix[distance_matrix <= 0] = 1e-10
reversed_distance_matrix = ( 1 / distance_matrix ) ** (1 / (fuzzy_num - 1))
sum_of_distances = np.sum(reversed_distance_matrix, axis = 1)
membership_values = np.zeros((size_of_pixel_values, no_of_segments))
for i in range(no_of_segments):
membership_values[:, i] = reversed_distance_matrix[:, i] / sum_of_distances
return membership_values
def c_means_clustering_algo(original_image, binary_mask, no_of_segments, fuzzy_num = 1.6, no_of_iterations = 20):
np.random.seed(0)
original_image = original_image*binary_mask
average_image = np.zeros(original_image.shape)
for i in range(original_image.shape[0]):
for j in range(original_image.shape[1]):
sum_of_pixel_values = 0
count = 0
if i != 0 :
sum_of_pixel_values += original_image[i-1][j]
count += 1
if j != 0 :
sum_of_pixel_values += original_image[i][j-1]
count += 1
if i != original_image.shape[0]-1:
sum_of_pixel_values += original_image[i+1][j]
count += 1
if j != original_image.shape[1]-1:
sum_of_pixel_values += original_image[i][j+1]
count += 1
average_image[i,j] = sum_of_pixel_values/count
pixel_values = np.float32(original_image.reshape((-1,1)))
average_pixel_values = np.float32(average_image.reshape((-1,1)))
term_criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.85)
return_val, labels, centers = cv2.kmeans(pixel_values, no_of_segments, None, term_criteria, 10, cv2.KMEANS_RANDOM_CENTERS)
kmeans_labels = np.copy(labels)
kmeans_centers = np.copy(centers)
ground_truth = np.copy(labels).flatten()
initial_membership_matrix = np.random.rand(pixel_values.shape[0],centers.shape[0])
initial_membership_matrix = initial_membership_matrix/initial_membership_matrix.sum(axis=1)[:,None]
membership_matrix = initial_membership_matrix
cost_value = 0
cost_array = []
#hyperparameter that controls the amount of influence the average image has on the segmentation process
alpha = 0.2
for i in range(no_of_iterations):
centers = class_means(membership_matrix, pixel_values, fuzzy_num, average_pixel_values, alpha)
membership_matrix = update_membership_values(pixel_values, centers, no_of_segments, fuzzy_num, average_pixel_values, alpha)
cost_value = cost_function(membership_matrix, pixel_values, centers, fuzzy_num, average_pixel_values, alpha)
cost_array.append(cost_value)
print(f"Iteration {i}: { cost_value }")
labels = np.argmax(membership_matrix,axis = 1)
seg = np.copy(labels).flatten()
if np.all(centers >= 0) and np.all(centers <= 1):
centers = centers * 255
centers = np.uint8(centers)
segmented_data = centers[labels.flatten()]
segmented_image = segmented_data.reshape((original_image.shape))
if np.all(kmeans_centers >= 0) and np.all(kmeans_centers <= 1):
kmeans_centers = kmeans_centers * 255
kmeans_centers = np.uint8(kmeans_centers)
kmeans_segmented_data = kmeans_centers[kmeans_labels.flatten()]
kmeans_segmented_data = kmeans_segmented_data.reshape((original_image.shape))
dice_coefficients = np.zeros(no_of_segments)
for i in range(no_of_segments):
dice_value = 0
for j in range(no_of_segments):
dice_value = max(dice_value,np.sum(seg[ground_truth==i]==j)*2.0 / (np.sum(seg[seg==j]==j) + np.sum(ground_truth[ground_truth==i]==i)))
dice_coefficients[i] = dice_value
print("Mean Dice Coefficient: ", np.mean(dice_coefficients))
fig, axs = plt.subplots(1, 3 )
axs[0].imshow(original_image,cmap='gray')
axs[0].set_title("Original Image")
axs[1].imshow(segmented_image,cmap='gray')
axs[1].set_title("FCM_S1 Algorithm")
axs[2].imshow(kmeans_segmented_data, cmap = 'gray')
axs[2].set_title("K-Means Clustering Algorithm")
plt.show()
return segmented_image, cost_array