-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfine_tuned_model.py
47 lines (34 loc) · 1.17 KB
/
fine_tuned_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from datasets import load_dataset
# Load OpenWebText dataset
dataset = load_dataset("openwebtext")
# Inspect the first few samples
print(dataset['train'][0])
from transformers import GPT2Tokenizer
tokenizer = GPT2Tokenizer.from_pretrain("distilgpt2")
def tokenize_function(examples):
return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512)
tokenized_datasets = dataset.map(tokenize_function, batched=True)
from transformers import GPT2LMHeadModel, Trainer, TrainingArguments
model = GPT2LMHeadModel.from_pretrained("distilgpt2")
training_args = TrainingArguments(
output_dir="./results",
overwrite_output_dir=True,
num_train_epochs=1,
per_device_train_batch_size=8,
save_steps=10_000,
save_total_limit=2,
logging_dir="./logs",
logging_steps=500,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["train"]
)
trainer.train()
trainer.save_model("./fine_tuned_model")
from transformers import pipeline
generator = pipeline("text-generation", model="./fine_tuned_model")
result = generator("Juniper is an intelligent assistant that", max_length=50)
print(result)