diff --git a/build.gradle.kts b/build.gradle.kts index b2b891db..88191e03 100644 --- a/build.gradle.kts +++ b/build.gradle.kts @@ -7,7 +7,7 @@ import org.jetbrains.kotlin.gradle.targets.js.nodejs.* plugins { signing `maven-publish` - kotlin("multiplatform") version "1.9.0" + kotlin("multiplatform") version "1.9.10" // kotlin("jupyter.api") version "0.11.0-225" id("com.github.ben-manes.versions") version "0.47.0" id("io.github.gradle-nexus.publish-plugin") version "2.0.0-rc-1" diff --git a/gradle/wrapper/gradle-wrapper.properties b/gradle/wrapper/gradle-wrapper.properties index 17a8ddce..c30b486a 100644 --- a/gradle/wrapper/gradle-wrapper.properties +++ b/gradle/wrapper/gradle-wrapper.properties @@ -1,6 +1,6 @@ distributionBase=GRADLE_USER_HOME distributionPath=wrapper/dists -distributionUrl=https\://services.gradle.org/distributions/gradle-8.2.1-bin.zip +distributionUrl=https\://services.gradle.org/distributions/gradle-8.3-bin.zip networkTimeout=10000 zipStoreBase=GRADLE_USER_HOME zipStorePath=wrapper/dists diff --git a/latex/tidyparse/presentation.tex b/latex/tidyparse/presentation.tex index 98fd1a01..fcfcf275 100644 --- a/latex/tidyparse/presentation.tex +++ b/latex/tidyparse/presentation.tex @@ -814,14 +814,14 @@ \section{Error Correction}\label{sec:error-correction} \node[ele,,label=right:$4$] (b4) at (4,1) {}; \node[draw,fit= (a1) (a2) (a3),minimum width=2.5cm,label=below:$A$] {} ; -\node[draw,fit= (b1) (b2) (b3) (b4),minimum width=2.5cm,label=below:$\mathbb{Z}$] {} ; +\node[draw,fit= (b1) (b2) (b3) (b4),minimum width=2.5cm,label=below:$\mathbb{N}$] {} ; \draw[->,shorten <=2pt,shorten >=2pt] (a1) -- (b4); \draw[->,shorten <=2pt,shorten >=2] (a2) -- (b2); \draw[->,shorten <=2pt,shorten >=2] (a3) -- (b1); %\draw[->,shorten <=2pt,shorten >=2] (a4) -- (b3); \end{tikzpicture} \end{figure} -We want a permutation mapping $f: A \rightarrow \mathbb{Z} \mid \forall a \in A \exists i \in \mathbb{Z}.f^{-1}(i) = a$. Then we can just sample $i \sim \mathbb{Z}$ without replacement and apply $f^{-1}(i)$. +We want a permutation mapping $f: A \rightarrow \mathbb{N} \mid \forall a \in A \exists i \in \mathbb{N}.f^{-1}(i) = a$. Then we can just sample $i \sim \mathbb{N}$ without replacement and apply $f^{-1}(i)$. \end{frame} \begin{frame}[fragile]{Error Correction: Levenshtein q-Balls}