-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeature-extraction.py
201 lines (151 loc) · 6.99 KB
/
feature-extraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import warnings
warnings.filterwarnings("ignore")
from tqdm.auto import tqdm
import torch
import os
import pandas as pd
import torchaudio
import numpy as np
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC, Wav2Vec2Tokenizer, pipeline, AutoTokenizer, AutoModel
import librosa
import librosa.feature
import re
# Path to the directory containing CSV files
csv_directory = "./annotations/"
# Path to the directory containing audio directories
audio_directory = "./Prima/SC_audio_"
# List of language names
languages = ["Bengali", "Gujarati", "Hindi", "Kannada", "Malayalam", "Odia", "Punjabi", "Tamil"]
# Initialize an empty list to store data
data = []
# Iterate through each language and train/test combination
for language in languages:
for split in ["train", "test"]:
# Read the CSV file
csv_filename = f"{language}_{split}.csv"
csv_path = os.path.join(csv_directory, csv_filename)
csv_data = pd.read_csv(csv_path)
# Iterate through each row in the CSV data
for index, row in csv_data.iterrows():
t = audio_directory+language+'/'
audio_path = os.path.join(t, row['filename'])
data.append({
'path_to_audio': audio_path,
'language': language,
'train_test': split,
'abuse': row['label']
})
df = pd.DataFrame(data)
# Set Device to CUDA
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
# Audio Features
languages = ["Bengali", "Gujarati", "Hindi", "Kannada", "Malayalam", "Odia", "Punjabi", "Tamil"]
embeddings = []
models = {
'Tamil' : 'Harveenchadha/vakyansh-wav2vec2-tamil-tam-250',
'Hindi' : 'Harveenchadha/hindi_base_wav2vec2',
'Gujarati' : 'Harveenchadha/vakyansh-wav2vec2-gujarati-gnm-100',
'Kannada' : 'Harveenchadha/vakyansh-wav2vec2-kannada-knm-560',
'Bengali' : 'Harveenchadha/vakyansh-wav2vec2-bengali-bnm-200',
'Punjabi' : 'Harveenchadha/vakyansh-wav2vec2-punjabi-pam-10',
'Odia' : 'Harveenchadha/vakyansh-wav2vec2-odia-orm-100',
'Malayalam' : 'Harveenchadha/vakyansh-wav2vec2-malayalam-mlm-8',
}
def audio_extraction_module(df, lang):
embeddings = []
temp = df[df['language']==lang].drop(['language', 'train_test', 'abuse'], axis=1)
processor = Wav2Vec2ForCTC.from_pretrained(models[lang]).to(device)
for path in tqdm(temp['path_to_audio']):
waveform, sample_rate = torchaudio.load(path)
# Preprocess audio and extract features
with torch.no_grad():
input_values = processor(waveform.to(device))
input_values = input_values.logits.cpu().detach().numpy()
embeddings.append(input_values)
torch.cuda.empty_cache()
return embeddings
for lang in languages:
embeddings.append(audio_extraction_module(df, lang))
x=[]
for i in tqdm(range(len(embeddings))):
x.append(np.mean(embeddings[i],axis=1))
mean_pooled = torch.tensor(x)
torch.save(mean_pooled, './features/audio/audio_features.pth')
torch.cuda.empty_cache()
# Emotion Features
result = []
i=0
for audio in tqdm(df['path_to_audio']):
X, sample_rate = librosa.load(audio)
stft = np.abs(librosa.stft(X))
mfccs = np.mean(librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=40).T, axis=0)
chroma = np.mean(librosa.feature.chroma_stft(S=stft, sr=sample_rate).T,axis=0)
temp = np.hstack((mfccs, chroma))
mel = np.mean(librosa.feature.melspectrogram(y=X, sr=sample_rate).T,axis=0)
temp = np.hstack((temp, mel))
contrast = np.mean(librosa.feature.spectral_contrast(S=stft, sr=sample_rate).T,axis=0)
temp = np.hstack((temp, contrast))
tonnetz = np.mean(librosa.feature.tonnetz(y=librosa.effects.harmonic(X), sr=sample_rate).T,axis=0)
result.append(np.hstack((temp, tonnetz)))
torch.save(torch.tensor(result), 'emotion_features.pth')
# Text Features
## Step 1
def transcription(df, transcribe):
sentences = []
i= 0
for audio in tqdm(df['path_to_audio']):
sentences.append(transcribe(audio)['text'])
return sentences
data = {
'Tamil' : ['ta', 'Harveenchadha/vakyansh-wav2vec2-tamil-tam-250'],
'Hindi' : ['hi', 'Harveenchadha/hindi_base_wav2vec2'],
'Gujarati' : ['gu', 'Harveenchadha/vakyansh-wav2vec2-gujarati-gnm-100'],
'Kannada' : ['kn', 'Harveenchadha/vakyansh-wav2vec2-kannada-knm-560'],
'Bengali' : ['bn', 'Harveenchadha/vakyansh-wav2vec2-bengali-bnm-200'],
'Punjabi' : ['pa', 'Harveenchadha/vakyansh-wav2vec2-punjabi-pam-10'],
'Odia' : ['or', 'Harveenchadha/vakyansh-wav2vec2-odia-orm-100'],
'Malayalam' : ['ma', 'Harveenchadha/vakyansh-wav2vec2-malayalam-mlm-8'],
}
for language in languages:
transcribe = pipeline(task="automatic-speech-recognition", model=data[language][1], chunk_length_s=30, device='cuda:0')
# transcribe.model.config.forced_decoder_ids = transcribe.tokenizer.get_decoder_prompt_ids(language=data[language][0], task="transcribe")
tempdf = df[df['language']==language].drop(['language', 'abuse', 'train_test'], axis=1)
tempdf = tempdf.head(15)
sentences = transcription(tempdf, transcribe)
file_path = f"./transcription/{language}_transcription.txt"
with open(file_path, "w", encoding="utf-8") as file:
for string in sentences:
file.write(string + "\n")
torch.cuda.empty_cache()
# Step 2
file_path = "./transcription/"
path_list = []
for i in range(len(languages)):
path_list.append(file_path+languages[i]+'_transcription.txt')
sentences = {}
for i in range(len(languages)):
with open(path_list[i], "r", encoding="utf-8") as file:
for line in file:
# Remove the newline character and add the string to the list
if languages[i] not in sentences.keys():
sentences[languages[i]] = [line.strip()]
else:
sentences[languages[i]].append(line.strip())
for language in sentences.keys():
for i in range(len(sentences[language])):
sentences[language][i] = re.sub(r'<s>', '', sentences[language][i])
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('l3cube-pune/indic-sentence-bert-nli')
model = AutoModel.from_pretrained('l3cube-pune/indic-sentence-bert-nli').to('cuda')
for lang in languages:
encoded_input = tokenizer(sentences[lang], padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input.to('cuda'))
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
torch.save(sentence_embeddings, f'{lang}-text-emb.pth')
torch.cuda.empty_cache()
# Feature Extraction Complete ✅