-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpara-linguistic-study.py
128 lines (93 loc) · 4.38 KB
/
para-linguistic-study.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import warnings
warnings.filterwarnings("ignore")
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import torch
from sklearn.decomposition import PCA
from sklearn.metrics.pairwise import euclidean_distances, cosine_similarity
from sklearn.preprocessing import StandardScaler
from sklearn.manifold import TSNE
csv_directory = "./annotations/"
audio_directory = "./Prima/SC_audio_"
languages = ["Bengali", "Gujarati", "Hindi", "Kannada", "Malayalam", "Odia", "Punjabi", "Tamil"]
data = []
for language in languages:
for split in ["train", "test"]:
csv_filename = f"{language}_{split}.csv"
csv_path = os.path.join(csv_directory, csv_filename)
csv_data = pd.read_csv(csv_path)
for index, row in csv_data.iterrows():
t = audio_directory+language+'/'
audio_path = os.path.join(t, row['filename'])
data.append({
'path_to_audio': audio_path,
'language': language,
'train_test': split,
'abuse': row['label']
})
df = pd.DataFrame(data)
audio = torch.load('./features/audio/audio_features.pth', map_location=torch.device('cpu')).squeeze(dim=1)
audio = pd.DataFrame(audio, columns=[f'audio_feature_{i}' for i in range(32)])
audio_df = pd.concat([audio, df['language'], df['abuse']], axis=1)
audio_df['abuse'] = np.where(audio_df['abuse'].values == 'Yes', 1, 0)
# Abuse Statistics
languages = ["Bengali", "Gujarati", "Hindi", "Kannada", "Malayalam", "Odia", "Punjabi", "Tamil"]
for lang in languages:
print('Distribution of Non-Abuses vs Abuses in ', lang)
print(pd.DataFrame(df[df['language']==lang].drop(['path_to_audio', 'language'],axis=1).groupby('abuse').size()).T)
def compute_distances(df, languages):
language_map = {}
languages = ["Bengali", "Gujarati", "Hindi", "Kannada", "Malayalam", "Odia", "Punjabi", "Tamil"]
i = 0
for lang in languages:
language_map[lang] = i
i+=1
df['abuse'] = np.where(df['abuse'].values == 'Yes', 1, 0)
df['language'] = df['language'].replace(language_map)
features = df.iloc[:, :193]
# Language Basis
languages = ["Bengali", "Gujarati", "Hindi", "Kannada", "Malayalam", "Odia", "Punjabi", "Tamil"]
language_basis = {}
for language in df['language'].unique():
language_data = df[df['language'] == language].drop(['language', 'abuse'], axis=1)
language_basis[languages[language]] = language_data.mean(axis=0)
min_distance = float('inf')
min_distance_languages = ('', '')
eucledian = pd.DataFrame(index=languages, columns=languages)
# Eucledian Distance
for lang1 in language_basis:
for lang2 in language_basis:
if lang1 != lang2:
distance = euclidean_distances([language_basis[lang1]], [language_basis[lang2]])[0, 0]
eucledian.loc[lang1, lang2] = distance
if distance < min_distance:
min_distance = distance
min_distance_languages = (lang1, lang2)
print(f"\nMinimum Eucledian distance is between {min_distance_languages[0]} and {min_distance_languages[1]}: {min_distance}")
# Cosine Similarity
languages = list(language_basis.keys())
similarity_matrix = pd.DataFrame(index=languages, columns=languages)
for lang1 in languages:
for lang2 in languages:
if lang1 != lang2:
similarity = cosine_similarity([language_basis[lang1]], [language_basis[lang2]])[0, 0]
similarity_matrix.loc[lang1, lang2] = similarity
# Cosine Similar Pairs
printed_pairs = set() # To keep track of printed pairs
for lang1 in languages:
for lang2 in languages:
if lang1 != lang2:
similarity = similarity_matrix.loc[lang1, lang2]
printed_pairs.add((lang1, lang2, similarity))
most_similar_pairs = list(printed_pairs)
most_similar_pairs.sort(key=lambda x: x[2], reverse=True)
most_similar_pairs = most_similar_pairs[::2]
top_n = 5 # Adjust the value of N as needed
print(f"\nTop {top_n} most similar language pairs:")
for pair in most_similar_pairs[:top_n]:
print(f"{pair[0]} and {pair[1]} with similarity score: {pair[2]}")
return similarity_matrix, eucledian
similarity_matrix, eucledian = compute_distances(audio_df, languages)
print(pd.DataFrame(similarity_matrix))