This repository has been archived by the owner on Sep 1, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathryu32.go
302 lines (279 loc) · 7.58 KB
/
ryu32.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
// Copyright 2018 Ulf Adams
// Modifications copyright 2019 Caleb Spare
//
// The contents of this file may be used under the terms of the Apache License,
// Version 2.0.
//
// (See accompanying file LICENSE or copy at
// http://www.apache.org/licenses/LICENSE-2.0)
//
// Unless required by applicable law or agreed to in writing, this software
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.
//
// The code in this file is part of a Go translation of the C code written by
// Ulf Adams which may be found at https://github.com/ulfjack/ryu. That source
// code is licensed under Apache 2.0 and this code is derivative work thereof.
package ryu
import (
"math"
"math/bits"
)
// dec32 is a floating decimal type representing m * 10^e.
type dec32 struct {
m uint32
e int32
}
func (d dec32) append(b []byte, neg bool) []byte {
// Step 5: Print the decimal representation.
if neg {
b = append(b, '-')
}
out := d.m
outLen := decimalLen32(out)
bufLen := outLen
if bufLen > 1 {
bufLen++ // extra space for '.'
}
// Print the decimal digits.
n := len(b)
b = append(b, make([]byte, bufLen)...)
for i := 0; i < outLen-1; i++ {
b[n+outLen-i] = '0' + byte(out%10)
out /= 10
}
b[n] = '0' + byte(out%10)
// Print the '.' if needed.
if outLen > 1 {
b[n+1] = '.'
}
// Print the exponent.
b = append(b, 'e')
exp := d.e + int32(outLen) - 1
if exp < 0 {
b = append(b, '-')
exp = -exp
} else {
// Unconditionally print a + here to match strconv's formatting.
b = append(b, '+')
}
// Always print two digits to match strconv's formatting.
d1 := exp % 10
d0 := exp / 10
b = append(b, '0'+byte(d0), '0'+byte(d1))
return b
}
func float32ToDecimalExactInt(mant, exp uint32) (d dec32, ok bool) {
e := exp - bias32
if e > mantBits32 {
return d, false
}
shift := mantBits32 - e
mant |= 1 << mantBits32 // implicit 1
d.m = mant >> shift
if d.m<<shift != mant {
return d, false
}
for d.m%10 == 0 {
d.m /= 10
d.e++
}
return d, true
}
func float32ToDecimal(mant, exp uint32) dec32 {
var e2 int32
var m2 uint32
if exp == 0 {
// We subtract 2 so that the bounds computation has
// 2 additional bits.
e2 = 1 - bias32 - mantBits32 - 2
m2 = mant
} else {
e2 = int32(exp) - bias32 - mantBits32 - 2
m2 = uint32(1)<<mantBits32 | mant
}
even := m2&1 == 0
acceptBounds := even
// Step 2: Determine the interval of valid decimal representations.
var (
mv = 4 * m2
mp = 4*m2 + 2
mmShift = boolToUint32(mant != 0 || exp <= 1)
mm = 4*m2 - 1 - mmShift
)
// Step 3: Convert to a decimal power base using 64-bit arithmetic.
var (
vr, vp, vm uint32
e10 int32
vmIsTrailingZeros bool
vrIsTrailingZeros bool
lastRemovedDigit uint8
)
if e2 >= 0 {
q := log10Pow2(e2)
e10 = int32(q)
k := pow5InvNumBits32 + pow5Bits(int32(q)) - 1
i := -e2 + int32(q) + k
vr = mulPow5InvDivPow2(mv, q, i)
vp = mulPow5InvDivPow2(mp, q, i)
vm = mulPow5InvDivPow2(mm, q, i)
if q != 0 && (vp-1)/10 <= vm/10 {
// We need to know one removed digit even if we are not
// going to loop below. We could use q = X - 1 above,
// except that would require 33 bits for the result, and
// we've found that 32-bit arithmetic is faster even on
// 64-bit machines.
l := pow5InvNumBits32 + pow5Bits(int32(q-1)) - 1
lastRemovedDigit = uint8(mulPow5InvDivPow2(mv, q-1, -e2+int32(q-1)+l) % 10)
}
if q <= 9 {
// The largest power of 5 that fits in 24 bits is 5^10,
// but q <= 9 seems to be safe as well. Only one of mp,
// mv, and mm can be a multiple of 5, if any.
if mv%5 == 0 {
vrIsTrailingZeros = multipleOfPowerOfFive32(mv, q)
} else if acceptBounds {
vmIsTrailingZeros = multipleOfPowerOfFive32(mm, q)
} else if multipleOfPowerOfFive32(mp, q) {
vp--
}
}
} else {
q := log10Pow5(-e2)
e10 = int32(q) + e2
i := -e2 - int32(q)
k := pow5Bits(i) - pow5NumBits32
j := int32(q) - k
vr = mulPow5DivPow2(mv, uint32(i), j)
vp = mulPow5DivPow2(mp, uint32(i), j)
vm = mulPow5DivPow2(mm, uint32(i), j)
if q != 0 && (vp-1)/10 <= vm/10 {
j = int32(q) - 1 - (pow5Bits(i+1) - pow5NumBits32)
lastRemovedDigit = uint8(mulPow5DivPow2(mv, uint32(i+1), j) % 10)
}
if q <= 1 {
// {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at
// least q trailing 0 bits. mv = 4 * m2, so it always
// has at least two trailing 0 bits.
vrIsTrailingZeros = true
if acceptBounds {
// mm = mv - 1 - mmShift, so it has 1 trailing 0 bit
// iff mmShift == 1.
vmIsTrailingZeros = mmShift == 1
} else {
// mp = mv + 2, so it always has at least one
// trailing 0 bit.
vp--
}
} else if q < 31 {
vrIsTrailingZeros = multipleOfPowerOfTwo32(mv, q-1)
}
}
// Step 4: Find the shortest decimal representation
// in the interval of valid representations.
var removed int32
var out uint32
if vmIsTrailingZeros || vrIsTrailingZeros {
// General case, which happens rarely (~4.0%).
for vp/10 > vm/10 {
vmIsTrailingZeros = vmIsTrailingZeros && vm%10 == 0
vrIsTrailingZeros = vrIsTrailingZeros && lastRemovedDigit == 0
lastRemovedDigit = uint8(vr % 10)
vr /= 10
vp /= 10
vm /= 10
removed++
}
if vmIsTrailingZeros {
for vm%10 == 0 {
vrIsTrailingZeros = vrIsTrailingZeros && lastRemovedDigit == 0
lastRemovedDigit = uint8(vr % 10)
vr /= 10
vp /= 10
vm /= 10
removed++
}
}
if vrIsTrailingZeros && lastRemovedDigit == 5 && vr%2 == 0 {
// Round even if the exact number is .....50..0.
lastRemovedDigit = 4
}
out = vr
// We need to take vr + 1 if vr is outside bounds
// or we need to round up.
if (vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5 {
out++
}
} else {
// Specialized for the common case (~96.0%). Percentages below
// are relative to this. Loop iterations below (approximately):
// 0: 13.6%, 1: 70.7%, 2: 14.1%, 3: 1.39%, 4: 0.14%, 5+: 0.01%
for vp/10 > vm/10 {
lastRemovedDigit = uint8(vr % 10)
vr /= 10
vp /= 10
vm /= 10
removed++
}
// We need to take vr + 1 if vr is outside bounds
// or we need to round up.
out = vr + boolToUint32(vr == vm || lastRemovedDigit >= 5)
}
return dec32{m: out, e: e10 + removed}
}
func decimalLen32(u uint32) int {
// Function precondition: u is not a 10-digit number.
// (9 digits are sufficient for round-tripping.)
// This benchmarked faster than the log2 approach used for uint64s.
assert(u < 1000000000, "too big")
switch {
case u >= 100000000:
return 9
case u >= 10000000:
return 8
case u >= 1000000:
return 7
case u >= 100000:
return 6
case u >= 10000:
return 5
case u >= 1000:
return 4
case u >= 100:
return 3
case u >= 10:
return 2
default:
return 1
}
}
func mulShift32(m uint32, mul uint64, shift int32) uint32 {
assert(shift > 32, "shift > 32")
hi, lo := bits.Mul64(uint64(m), mul)
shiftedSum := (lo >> uint(shift)) + (hi << uint(64-shift))
assert(shiftedSum <= math.MaxUint32, "shiftedSum <= math.MaxUint32")
return uint32(shiftedSum)
}
func mulPow5InvDivPow2(m, q uint32, j int32) uint32 {
return mulShift32(m, pow5InvSplit32[q], j)
}
func mulPow5DivPow2(m, i uint32, j int32) uint32 {
return mulShift32(m, pow5Split32[i], j)
}
func pow5Factor32(v uint32) uint32 {
for n := uint32(0); ; n++ {
q, r := v/5, v%5
if r != 0 {
return n
}
v = q
}
}
// multipleOfPowerOfFive32 reports whether v is divisible by 5^p.
func multipleOfPowerOfFive32(v, p uint32) bool {
return pow5Factor32(v) >= p
}
// multipleOfPowerOfTwo32 reports whether v is divisible by 2^p.
func multipleOfPowerOfTwo32(v, p uint32) bool {
return uint32(bits.TrailingZeros32(v)) >= p
}