Skip to content

Commit

Permalink
doc: add Korean translation of chapter 2 quiz
Browse files Browse the repository at this point in the history
  • Loading branch information
chabulhwi committed Sep 28, 2024
1 parent cb1acf4 commit 79cbbc2
Show file tree
Hide file tree
Showing 4 changed files with 1,669 additions and 0 deletions.
101 changes: 101 additions & 0 deletions docs/glossary/glossary.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
# Glossary in tab-separated format -*- coding: utf-8 -*-
St. Anselm 안셀무스
ontological 존재론적
argument 논증
argument 인수
Lean 린
Lean community 린 커뮤니티
God 신
Alvin Plantinga 앨빈 플랜팅아
exist 존재하다
existence 존재
the understanding 지성
reality 현실
assumption 가정
reductio 귀류법
great 큰
premise 전제
being 존재자
conceive 생각하다
definition 정의
true 참
true 참인
false 거짓
false 거짓인
formulate 정식화하다
formulation 정식화
formalize 형식화하다
formalization 형식화
property 속성
redundant 불필요한
sentence 문장
state 진술하다
statement 진술
proposition 명제
negation 부정
axiom 공리
theorem 정리
theory 이론
conclude 결론하다
prove 증명하다
SEP 스탠퍼드 철학 백과사전
Eric Wieser 에릭 비저
Alistair Tucker 앨리스터 터커
philosophy 철학
Owl of Sogang 서강올빼미
type theory 유형론
universe level 유형 세계 변수
type 유형
type 입력하다
type check 유형을 확인하다
type check 유형이 확인되다
type check 유형 확인이 잘되다
type class 유형 클래스
instance 사례
category mistake 범주 실수
class 클래스
example 보기
example 예
inductive type 귀납형
define 정의하다
constructor 구성자
Apache License, Version 2.0 아파치 라이선스, 버전 2.0
under the terms of 의 조건에 따라
OmegaT 오메가T
symbolic link 심벌릭 링크
directory 디렉터리
root directory 최상위 디렉터리
documentation 문서
English 영어
Korean 한국어
chapter 장
quiz 퀴즈
question 문제
command 명령어
error 오류
code 코드
evaluate 계산하다
keyword 핵심어
declare 선언하다
constant 상수
reference 참고 문헌
universe-polymorphic 세계 다형적
parametrically polymorphic 매개 변수 다형적
function 함수
identifier 식별자
definitionally equal 정의상 같은
natural number 자연수
input 입력값
return 반환하다
non-zero 영이 아닌
zero 영
alpha-equivalent 알파 동등한
less-than-or-equal-to sign 작거나 같음 부호
dependent function 의존 함수
dependent function type 의존 함수형
dependent product 의존곱
dependent product type 의존곱형
underscore 밑줄
implicit 암시적
explicit 명시적
sigma type 시그마
74 changes: 74 additions & 0 deletions docs/ko/notes/chapter03/propositions.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,74 @@
# Propositional Logic

## Propositions

### The Usages of the Term 'Proposition'

> The term ‘proposition’ has a broad use in contemporary philosophy. It is used
> to refer to some or all of the following: the primary bearers of truth-value,
> the objects of belief and other “propositional attitudes” (i.e., what is
> believed, doubted, etc.), the referents of that-clauses, and the meanings of
> sentences. (McGrath and Frank 2024)
### Propositions in School Mathematics in South Korea

> 문장 ‘2는 소수이다.’는 참이고, 식 ‘`√2 + √3 = √5`’는 거짓이다. 이와 같이 참,
> 거짓을 명확하게 판별할 수 있는 문장이나 식을 **명제**라고 한다. (전인태 n.d.,
> 83)
>
> The sentence ‘2 is prime’ is true and the expression ‘`√2 + √3 = √5`’ is
> false. We refer to a sentence or expression whose truth or falsehood can be
> clearly determined, like these examples, as a *proposition*.
### Questions about Usages of the Term 'Proposition'

#### Is the Sentence 'Bulhwi Cha loves himself' a Proposition?

High school mathematics teachers in South Korea would answer no. On the
contrary, it seems the authors of the entry "Propositions" in the Stanford
Encyclopedia of Philosophy (SEP) would answer yes, judging from the following
quotations:

> E.g., if the proposition that `a` loves `b` is the ordered triple `<loving, a,
> b>`,
> it is distinct from the proposition that `b` loves `a`, which would be the ordered
> triple `<loving, b, a>`. (McGrath and Frank 2024)
> Is the proposition that John loves Mary different from the proposition that
> Mary is loved by John? (ibid.)
#### Is a Conjecture in Mathematics a Proposition?

Goldbach's conjecture states that every even natural number greater than 2 is
the sum of two prime numbers. We don't know whether it's true or false as of
2024, so high school mathematics teachers in South Korea would *have to* answer
no.

However, the conjecture can be defined as a proposition in the Lean theorem
prover as follows:

```lean
import Mathlib.Data.Nat.Prime.Defs
def goldbach_conjecture : Prop :=
∀ n : ℕ, Even n ∧ n > 2 → ∃ p q : ℕ, (Prime p ∧ Prime q) ∧ n = p + q
```

### My Closing Thoughts

I don't think the usage of the term 'proposition' in Korean high school
mathematics coincides with those in contemporary philosophy or interactive
theorem provers like Lean.

One can't clearly determine what the verb phrase 'clearly determine' really
means, so Korean high school mathematics doesn't make it easier for students to
understand the notion of a proposition.

## 참고 문헌

* McGrath, Matthew and Devin Frank, "Propositions", *The Stanford Encyclopedia
of Philosophy* (Fall 2024 Edition), Edward N. Zalta & Uri Nodelman (eds.), URL
= <https://plato.stanford.edu/archives/fall2024/entries/propositions/>.
* 전인태, 김동재, 최은아 등. 게재일 불명. “고등학교 공통수학2.” 천재교과서. 2024년 9월 26일에
마지막으로 접속함.
<https://view.chunjae.co.kr/streamdocs/view/sd;streamdocsId=BbTgEmTJFvPiML1Vt8UZRczOcmO6rlK3ins3Ux5VOHA>.
Loading

0 comments on commit 79cbbc2

Please sign in to comment.