-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy path.project-metadata.yaml
executable file
·78 lines (69 loc) · 2.21 KB
/
.project-metadata.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
name: MLFlow Tracking
description: Instrumenting some scikit-learn models with MLFLow for experiment tracking.
author: Cloudera Inc.
specification_version: 1.0
prototype_version: 2.0
date: "2022-03-28"
environment_variables:
PYTHONPATH:
default: "/home/cdsw"
description: "Allow Python to find scripts directory when run as CLI"
prompt_user: false
MLFLOW_TRACKING_URI:
default: ""
description: "URI of the tracking server. Leave blank to run locally."
prompt_user: false
runtimes:
- editor: Workbench
kernel: Python 3.9
edition: Standard
tasks:
- type: create_job
name: Install Dependencies
entity_label: install_dependencies
script: cml/install_dependencies.py
arguments: None
cpu: 1
memory: 2
short_summary: Create a job to install project dependencies.
environment:
TASK_TYPE: CREATE/RUN_JOB
- type: run_job
entity_label: install_dependencies
short_summary: Run the install dependencies job.
long_summary: Run the install dependencies job.
- type: create_job
name: Train KNeighbors
entity_label: train_kneighbors
script: scripts/train_kneighbors.py
arguments: None
cpu: 1
memory: 2
short_summary: Create a training job for a k-nearest neighbors classifier.
environment:
TASK_TYPE: CREATE/RUN_JOB
- type: run_job
entity_label: train_kneighbors
short_summary: Training a knn algorithm.
long_summary: Train a k-nearest neighbors algorithm for classification on a fake dataset.
- type: create_job
name: Train Random Forest
entity_label: train_random_forest
script: scripts/train_random_forest.py
arguments: None
cpu: 1
memory: 2
short_summary: Create a training job for a random forest classifier.
environment:
TASK_TYPE: CREATE/RUN_JOB
- type: run_job
entity_label: train_random_forest
short_summary: Train a random forest algorithm.
long_summary: Training a random forest algorithm for classification on a fake dataset.
- type: start_application
name: MLFlow UI
subdomain: mlflow
script: cml/mlflow_ui.py
short_summary: Launch the MLFlow UI application
environment_variables:
TASK_TYPE: START_APPLICATION