-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRBC_CPP_2.cpp
156 lines (129 loc) · 6.45 KB
/
RBC_CPP_2.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
//============================================================================
// Name : RBC_CPP.cpp
// Description : Basic RBC model with full depreciation, more idiomatic C++ version
// Date : July 21, 2013
// Corrected by: Dziubinski, Matt P, [email protected]
//============================================================================
#include <array>
#include <chrono> // time measurement
#include <cmath> // std::abs, std::log, std::pow
#include <cstddef> // std::size_t
#include <iostream>
#include <limits> // std::numeric_limits
// fixed-size vector, size: Rows
template <std::size_t Rows> using Vector = std::array<double, Rows>;
// fixed-size matrix, size: Rows * Columns
template <std::size_t Rows, std::size_t Columns> using Matrix = std::array<Vector<Columns>, Rows>;
int main()
{
const auto time_0 = std::chrono::steady_clock::now();
///////////////////////////////////////////////////////////////////////////////////////////
// 1. Calibration
///////////////////////////////////////////////////////////////////////////////////////////
const auto aalpha = 1. / 3.; // Elasticity of output w.r.t. capital
const auto bbeta = 0.95; // Discount factor;
// Productivity values
const std::size_t nGridProductivity = 5;
const Vector<nGridProductivity> vProductivity{ { 0.9792, 0.9896, 1.0000, 1.0106, 1.0212 } };
// Transition matrix
const Matrix<nGridProductivity, nGridProductivity> mTransition{ {
{ 0.9727, 0.0273, 0.0000, 0.0000, 0.0000 },
{ 0.0041, 0.9806, 0.0153, 0.0000, 0.0000 },
{ 0.0000, 0.0082, 0.9837, 0.0082, 0.0000 },
{ 0.0000, 0.0000, 0.0153, 0.9806, 0.0041 },
{ 0.0000, 0.0000, 0.0000, 0.0273, 0.9727 }
} };
///////////////////////////////////////////////////////////////////////////////////////////
// 2. Steady State
///////////////////////////////////////////////////////////////////////////////////////////
const auto capitalSteadyState = std::pow(aalpha * bbeta, 1. / (1. - aalpha));
const auto outputSteadyState = std::pow(capitalSteadyState, aalpha);
const auto consumptionSteadyState = outputSteadyState - capitalSteadyState;
std::cout << "Output = " << outputSteadyState << ", Capital = " << capitalSteadyState << ", Consumption = " << consumptionSteadyState << "\n";
// We generate the grid of capital
const std::size_t nGridCapital = 17820;
Vector<nGridCapital> vGridCapital;
for (std::size_t nCapital = 0; nCapital < nGridCapital; ++nCapital)
vGridCapital[nCapital] = 0.5 * capitalSteadyState + 0.00001 * nCapital;
// 3. Required matrices and vectors
Matrix<nGridCapital, nGridProductivity> mOutput; // default-initialization (indeterminate value)
Matrix<nGridCapital, nGridProductivity> mValueFunction = {}; // value-initialization
Matrix<nGridCapital, nGridProductivity> mValueFunctionNew = {}; // value-initialization
Matrix<nGridCapital, nGridProductivity> mPolicyFunction = {}; // value-initialization
Matrix<nGridCapital, nGridProductivity> expectedValueFunction; // default-initialization (indeterminate value)
// 4. We pre-build output for each point in the grid
for (std::size_t nProductivity = 0; nProductivity < nGridProductivity; ++nProductivity)
{
for (std::size_t nCapital = 0; nCapital < nGridCapital; ++nCapital)
mOutput[nCapital][nProductivity] = vProductivity[nProductivity] * std::pow(vGridCapital[nCapital], aalpha);
}
// 5. Main iteration
const double tolerance = 0.0000001;
auto maxDifference = 10.0;
std::size_t iteration = 0;
while (maxDifference > tolerance)
{
for (std::size_t nProductivity = 0; nProductivity < nGridProductivity; ++nProductivity)
{
for (std::size_t nCapital = 0; nCapital < nGridCapital; ++nCapital)
{
expectedValueFunction[nCapital][nProductivity] = 0.0;
for (std::size_t nProductivityNextPeriod = 0; nProductivityNextPeriod < nGridProductivity; ++nProductivityNextPeriod)
expectedValueFunction[nCapital][nProductivity] += mTransition[nProductivity][nProductivityNextPeriod] * mValueFunction[nCapital][nProductivityNextPeriod];
}
}
for (std::size_t nProductivity = 0; nProductivity < nGridProductivity; ++nProductivity)
{
// We start from previous choice (monotonicity of policy function)
std::size_t gridCapitalNextPeriod = 0;
for (std::size_t nCapital = 0; nCapital < nGridCapital; ++nCapital)
{
auto valueHighSoFar = -std::numeric_limits<double>::infinity();
auto capitalChoice = vGridCapital[0];
for (std::size_t nCapitalNextPeriod = gridCapitalNextPeriod; nCapitalNextPeriod < nGridCapital; ++nCapitalNextPeriod)
{
const auto consumption = mOutput[nCapital][nProductivity] - vGridCapital[nCapitalNextPeriod];
const auto valueProvisional = (1. - bbeta) * std::log(consumption) + bbeta * expectedValueFunction[nCapitalNextPeriod][nProductivity];
if (valueProvisional > valueHighSoFar)
{
valueHighSoFar = valueProvisional;
capitalChoice = vGridCapital[nCapitalNextPeriod];
gridCapitalNextPeriod = nCapitalNextPeriod;
}
else
{
mValueFunctionNew[nCapital][nProductivity] = valueHighSoFar;
mPolicyFunction[nCapital][nProductivity] = capitalChoice;
// We break when we have achieved the max (note: of a monotonic function)
break;
}
mValueFunctionNew[nCapital][nProductivity] = valueHighSoFar;
mPolicyFunction[nCapital][nProductivity] = capitalChoice;
}
}
}
double diffHighSoFar = -std::numeric_limits<double>::infinity();
for (std::size_t nProductivity = 0; nProductivity < nGridProductivity; ++nProductivity)
{
for (std::size_t nCapital = 0; nCapital<nGridCapital; ++nCapital)
{
const auto diff = std::abs(mValueFunction[nCapital][nProductivity] - mValueFunctionNew[nCapital][nProductivity]);
if (diff > diffHighSoFar) diffHighSoFar = diff;
mValueFunction[nCapital][nProductivity] = mValueFunctionNew[nCapital][nProductivity];
}
}
maxDifference = diffHighSoFar;
++iteration;
if ((iteration % 10 == 0) || (iteration == 1))
std::cout << "Iteration = " << iteration << ", Sup Diff = " << maxDifference << "\n";
}
std::cout << "Iteration = " << iteration << ", Sup Diff = " << maxDifference << "\n";
endl(std::cout);
std::cout << "My check = " << mPolicyFunction[999][2] << "\n";
endl(std::cout);
const auto time_1 = std::chrono::steady_clock::now();
const auto elapsed_seconds = std::chrono::duration_cast<std::chrono::duration<double>>(time_1 - time_0).count();
std::cout << "Elapsed time is = " << elapsed_seconds << " seconds." << std::endl;
endl(std::cout);
return 0;
}