-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRBC_Matlab_Inside_Loop.m
105 lines (76 loc) · 2.78 KB
/
RBC_Matlab_Inside_Loop.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
%% Basic RBC model with full depreciation
%
% Jesus Fernandez-Villaverde
% Haverford, July 3, 2013
%% 0. Housekeeping
clear all
close all
clc
global nGridCapital nGridProductivity bbeta
tic
%% 1. Calibration
aalpha = 1/3; % Elasticity of output w.r.t. capital
bbeta = 0.95; % Discount factor
% Productivity values
vProductivity = [0.9792; 0.9896; 1.0000; 1.0106; 1.0212]';
% Transition matrix
mTransition = [0.9727, 0.0273, 0.0000, 0.0000, 0.0000;
0.0041, 0.9806, 0.0153, 0.0000, 0.0000;
0.0000, 0.0082, 0.9837, 0.0082, 0.0000;
0.0000, 0.0000, 0.0153, 0.9806, 0.0041;
0.0000, 0.0000, 0.0000, 0.0273, 0.9727];
%% 2. Steady State
capitalSteadyState = (aalpha*bbeta)^(1/(1-aalpha));
outputSteadyState = capitalSteadyState^aalpha;
consumptionSteadyState = outputSteadyState-capitalSteadyState;
fprintf(' Output = %2.6f, Capital = %2.6f, Consumption = %2.6f\n', outputSteadyState, capitalSteadyState, consumptionSteadyState);
fprintf('\n')
% We generate the grid of capital
vGridCapital = 0.5*capitalSteadyState:0.00001:1.5*capitalSteadyState;
nGridCapital = length(vGridCapital);
nGridProductivity = length(vProductivity);
%% 3. Required matrices and vectors
mOutput = zeros(nGridCapital,nGridProductivity);
mValueFunction = zeros(nGridCapital,nGridProductivity);
expectedValueFunction = zeros(nGridCapital,nGridProductivity);
%% 4. We pre-build output for each point in the grid
mOutput = (vGridCapital'.^aalpha)*vProductivity;
%% 5. Main iteration
maxDifference = 10.0;
tolerance = 0.0000001;
iteration = 0;
while (maxDifference>tolerance)
expectedValueFunction = mValueFunction*mTransition';
[mValueFunctionNew,mPolicyFunction] = inside_loop_mex(vGridCapital,mOutput,expectedValueFunction);
maxDifference = max(max(abs(mValueFunctionNew-mValueFunction)));
mValueFunction = mValueFunctionNew;
iteration = iteration+1;
if (mod(iteration,10)==0 || iteration ==1)
fprintf(' Iteration = %d, Sup Diff = %2.8f\n', iteration, maxDifference);
end
end
fprintf(' Iteration = %d, Sup Diff = %2.8f\n', iteration, maxDifference);
fprintf('\n')
fprintf(' My check = %2.6f\n', mPolicyFunction(1000,3));
fprintf('\n')
toc
% %% 6. Plotting results
%
% figure(1)
%
% subplot(3,1,1)
% plot(vGridCapital,mValueFunction)
% xlim([vGridCapital(1) vGridCapital(nGridCapital)])
% title('Value Function')
%
% subplot(3,1,2)
% plot(vGridCapital,mPolicyFunction)
% xlim([vGridCapital(1) vGridCapital(nGridCapital)])
% title('Policy Function')
%
% vExactPolicyFunction = aalpha*bbeta.*(vGridCapital.^aalpha);
%
% subplot(3,1,3)
% plot((100.*(vExactPolicyFunction'-mPolicyFunction(:,3))./mPolicyFunction(:,3)))
% title('Comparison of Exact and Approximated Policy Function')
%