-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest_generativepoetry.py
900 lines (820 loc) · 53.3 KB
/
test_generativepoetry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
import itertools
import os
import re
import inflect
import spacy
import unittest
from unittest.mock import patch
from generativepoetry.lexigen import *
from generativepoetry.pdf import *
from generativepoetry.poemgen import *
from generativepoetry.utils import *
from generativepoetry.decomposer import *
spacy_nlp = spacy.load('en_core_web_sm', disable=['ner'])
spacy_nlp.remove_pipe("parser")
class TestUtils(unittest.TestCase):
def test_setup_spellchecker(self):
self.assertIsNotNone(setup_spellchecker())
def test_get_random_color(self):
for i in range(4):
rgb = get_random_color()
red_over = rgb[0] >= .85
green_over = rgb[1] >= .85
blue_over = rgb[2] >= .85
self.assertFalse(red_over and green_over) or (red_over and blue_over) or (green_over and blue_over)
for i in range(4):
threshold = .25
rgb = get_random_color()
red_over = rgb[0] >= threshold
green_over = rgb[1] >= threshold
blue_over = rgb[2] >= threshold
self.assertFalse(red_over and green_over) or (red_over and blue_over) or (green_over and blue_over)
def test_get_input_words(self):
test_input = 'trout mask replica'
with patch('builtins.input', return_value=test_input):
self.assertEqual(get_input_words(), ['trout', 'mask', 'replica'])
test_input = 'fish,paperclip,atom,benign'
with patch('builtins.input', return_value=test_input):
self.assertEqual(get_input_words(), ['fish', 'paperclip', 'atom', 'benign'])
test_input = 'fish, paperclip, atom, benign'
with patch('builtins.input', return_value=test_input):
self.assertEqual(get_input_words(), ['fish', 'paperclip', 'atom', 'benign'])
def test_validate_str(self):
self.assertRaises(ValueError, lambda: validate_str(2))
self.assertRaises(ValueError, lambda: validate_str(2.5))
self.assertRaises(ValueError, lambda: validate_str(False))
self.assertRaises(ValueError, lambda: validate_str(None))
validate_str('lingo')
def test_validate_str_list(self):
self.assertRaises(ValueError, lambda: validate_str_list(2))
self.assertRaises(ValueError, lambda: validate_str_list(2.5))
self.assertRaises(ValueError, lambda: validate_str_list(False))
self.assertRaises(ValueError, lambda: validate_str_list(None))
self.assertRaises(ValueError, lambda: validate_str_list('not a list'))
self.assertRaises(ValueError, lambda: validate_str_list(['a', 'b', None]))
validate_str_list(['a', 'b', 'c'])
def test_validate_str_or_list_of_str(self):
self.assertRaises(ValueError, lambda: validate_str_list(2))
self.assertRaises(ValueError, lambda: validate_str_list(2.5))
self.assertRaises(ValueError, lambda: validate_str_list(False))
self.assertRaises(ValueError, lambda: validate_str_list(None))
self.assertRaises(ValueError, lambda: validate_str_list(['a', 'b', None]))
validate_str('deciduous')
validate_str_list(['anodyne', 'bolo', 'cdrkssdjak'])
def test_has_invalid_characters(self):
self.assertTrue(has_invalid_characters('gh0st'))
self.assertTrue(has_invalid_characters('compound word'))
self.assertTrue(has_invalid_characters('compound-word'))
self.assertTrue(has_invalid_characters("apostrophe'"))
self.assertFalse(has_invalid_characters('espousal'))
def test_too_similar(self):
self.assertRaises(ValueError, lambda: too_similar(None, 25.2))
self.assertRaises(ValueError, lambda: too_similar('string', 25))
self.assertRaises(ValueError, lambda: too_similar(list(), 'beans'))
self.assertFalse(too_similar('self', 'other'))
self.assertTrue(too_similar('dog', 'dog'))
self.assertTrue(too_similar('dog', 'dogs'))
self.assertTrue(too_similar('dogs', 'dog'))
self.assertTrue(too_similar('spherical', 'spherically'))
self.assertTrue(too_similar('spherically', 'spherical'))
self.assertTrue(too_similar('riposte', 'riposted'))
self.assertTrue(too_similar('riposted', 'riposte'))
self.assertTrue(too_similar('riposte', ['dogs', 'mushroom', 'riposted']))
self.assertFalse(too_similar('riposte', ['dogs', 'mushroom', 'quails']))
self.assertTrue(too_similar('thee', 'the'))
self.assertTrue(too_similar('thee', 'the'))
def test_filter_word(self):
self.assertFalse(filter_word('an'))
self.assertFalse(filter_word('nonexistentword'))
self.assertFalse(filter_word('errantry')) # 1.51e-08 so below threshold
self.assertTrue(filter_word('crepuscular')) # 7.41e-08 so OK
self.assertTrue(filter_word('puppy'))
self.assertFalse(filter_word('thew')) # from the annoying words list
def test_filter_word_list(self):
word_list = ['the', 'crepuscular', 'dogs']
self.assertEqual(filter_word_list(word_list), word_list) ## All spelled correctly
word_list = ['the', 'underworld', 'gh0st', 'errantry', 'an']
valid_words = ['the', 'underworld']
self.assertEqual(filter_word_list(word_list), valid_words)
word_list = ['araignment', 'arraignment', 'dynosaur', 'dinosaur']
correctly_spelled_word_list = ['arraignment', 'dinosaur']
self.assertEqual(filter_word_list(word_list), correctly_spelled_word_list)
exclude_words = ['diamond', 'dinosaur']
self.assertEqual(filter_word_list(word_list, exclude_words=exclude_words), ['arraignment'])
def test_sort_by_rarity(self):
unsorted_words = ['cat', 'catabasis', 'hue', 'corncob', 'the', 'Catalan', 'errant']
correctly_sorted_words = ['catabasis', 'corncob', 'errant', 'hue', 'Catalan', 'cat', 'the']
self.assertEqual(sort_by_rarity(unsorted_words), correctly_sorted_words)
def correct_a_vs_a_vs_an(self):
needs_no_correction = ['an', 'obscure' 'elephant' 'and' 'a' 'wandering' 'heliotrope', 'see', 'a', '3']
self.assertEqual(correct_a_vs_an(needs_no_correction), needs_no_correction)
needs_correction = ['a', 'obscure' 'elephant' 'and' 'an' 'wandering' 'heliotrope', 'see', 'an', '3']
self.assertEqual(correct_a_vs_an(needs_no_correction), needs_no_correction)
class TestLexigen(unittest.TestCase):
def test_rhymes(self):
self.assertEqual(rhymes('metamorphosis'), [])
rhymes_with_clouds = ['crowds', 'shrouds']
results = rhymes('clouds')
self.assertEqual(sorted(results), rhymes_with_clouds)
rhymes_with_sprouting = ['doubting', 'flouting', 'grouting', 'outing', 'pouting', 'rerouting', 'routing',
'scouting', 'shouting', 'spouting', 'touting']
self.assertEqual(sorted(rhymes('sprouting', sample_size=None)), rhymes_with_sprouting)
results = rhymes('sprouting')
self.assertNotIn('sprouting', results)
self.assertEqual(sorted(results), rhymes_with_sprouting)
results = rhymes('sprouting', sample_size=6)
self.assertEqual(len(results), 6)
self.assertTrue(set(rhymes_with_sprouting).issuperset(set(results)))
rhymes_with_either = sorted(rhymes_with_clouds + rhymes_with_sprouting)
self.assertEqual(sorted(rhymes(['sprouting', 'clouds'], sample_size=None)), rhymes_with_either)
results = rhymes(['clouds', 'sprouting'], sample_size=6)
self.assertEqual(len(results), 6)
self.assertTrue(set(rhymes_with_either).issuperset(set(results)))
def test_rhyme(self):
self.assertIsNone(rhyme('metamorphosis'))
self.assertIn(rhyme('sprouting'), rhymes('sprouting'))
def test_extract_sample(self):
self.assertEqual(extract_sample([], sample_size=100), [])
self.assertEqual(extract_sample(['a'], sample_size=100), ['a'])
self.assertEqual(sorted(extract_sample(['a','b','c'], sample_size=3)), ['a','b','c'])
sample = extract_sample(['a','b','c','d','e','f'], sample_size=4)
self.assertNotEqual(sorted(sample), ['a','b','c','d','e','f'])
self.assertTrue(set(['a','b','c','d','e','f']).issuperset(set(sample)))
def test_similar_sounding_words(self):
similar_sounding_to_homonym_words = ['hastening', 'heightening', 'hominid', 'hominy', 'homonyms', 'summoning',
'synonym']
self.assertEqual(sorted(similar_sounding_words('homonym', sample_size=None)), similar_sounding_to_homonym_words)
results = similar_sounding_words('homonym')
self.assertEqual(len(results), 6)
self.assertTrue(set(similar_sounding_to_homonym_words).issuperset(set(results)))
similar_sounding_to_ennui_words = ['anew', 'any', 'emcee', 'empty']
all_similar_sounding_words = sorted(similar_sounding_to_homonym_words + similar_sounding_to_ennui_words)
self.assertEqual(sorted(similar_sounding_words(['homonym', 'ennui'], sample_size=None)),
all_similar_sounding_words)
results = similar_sounding_words(['homonym', 'ennui'])
self.assertEqual(len(results), 6)
self.assertTrue(set(all_similar_sounding_words).issuperset(set(results)))
def test_similar_sounding_word(self):
self.assertIsNone(similar_sounding_word('voodoo'))
all_similar_sounding_words = ['hastening', 'heightening', 'hominid', 'hominy', 'homonym', 'homonyms',
'summoning', 'synonym'] # Using this to save API call in test
self.assertIn(similar_sounding_word('homonym'), all_similar_sounding_words)
def test_similar_meaning_words(self):
self.assertEqual(similar_meaning_words('nonexistentword'), [])
similar_meaning_to_vampire_words = ['bats', 'bloodsucker', 'clan', 'demon', 'ghoul', 'james', 'kind', 'lamia',
'lycanthrope', 'lycanthropy', 'shane', 'shapeshifter', 'succubus', 'undead',
'vamp', 'vampirism', 'werewolf', 'witch', 'wolfman', 'zombie']
results = similar_meaning_words('vampire', sample_size=None)
self.assertEqual(len(results), 20)
self.assertEqual(sorted(results), similar_meaning_to_vampire_words)
results = similar_meaning_words('vampire', sample_size=None, datamuse_api_max=None)
self.assertGreater(len(results), 20)
self.assertTrue(set(results).issuperset(set(similar_meaning_to_vampire_words)))
results = similar_meaning_words('vampire', sample_size=6)
self.assertEqual(len(results), 6)
self.assertTrue(set(similar_meaning_to_vampire_words).issuperset(set(results)))
similar_meaning_to_gothic = ['goth', 'hard', 'eldritch', 'unusual', 'spooky', 'rococo', 'minimalist', 'folky',
'lovecraftian', 'strange', 'baroque', 'creepy', 'medieval', 'mediaeval']
similar_meaning_to_either = sorted(similar_meaning_to_vampire_words + similar_meaning_to_gothic)
self.assertEqual(sorted(similar_meaning_words(['vampire', 'gothic'], sample_size=None)),
similar_meaning_to_either)
results = similar_meaning_words(['vampire', 'gothic'])
self.assertEqual(len(results), 6)
self.assertTrue(set(similar_meaning_to_either).issuperset(set(results)))
def test_similar_meaning_word(self):
self.assertIsNone(similar_meaning_word('nonexistentword'))
similar_meaning_to_vampire_words = ['bats', 'bloodsucker', 'clan', 'demon', 'ghoul', 'james', 'kind', 'lamia',
'lycanthrope', 'lycanthropy', 'shane', 'shapeshifter', 'succubus', 'undead',
'vamp', 'vampirism', 'werewolf', 'witch', 'wolfman', 'zombie']
self.assertIn(similar_meaning_word('vampire'), similar_meaning_to_vampire_words)
def test_contextually_linked_words(self):
self.assertEqual(contextually_linked_words('nonexistentword'), [])
contextually_linked_to_metamorphosis = ['budding', 'cocoon', 'duff', 'frogs', 'gills', 'hatching', 'juvenile',
'kafka', 'lamprey', 'larva', 'metamorphose', 'narcissus', 'nymph',
'polyp', 'polyps', 'pupa', 'pupal', 'salamander', 'starfish', 'tadpole']
results = contextually_linked_words('metamorphosis', sample_size=None)
self.assertEqual(len(results), 20)
self.assertEqual(sorted(results), contextually_linked_to_metamorphosis)
results = contextually_linked_words('metamorphosis', sample_size=None, datamuse_api_max=None)
self.assertGreater(len(results), 20)
self.assertTrue(set(results).issuperset(set(contextually_linked_to_metamorphosis)))
results = contextually_linked_words('metamorphosis', sample_size=6)
self.assertEqual(len(results), 6)
self.assertTrue(set(contextually_linked_to_metamorphosis).issuperset(set(results)))
contextually_linked_to_crepuscular = ['foraging', 'dusk', 'habits', 'twilight', 'diurnal', 'rays', 'dens',
'forage', 'insects', 'nocturnal', 'overcast', 'predation', 'skipper',
'sunset', 'moths', 'dawn', 'rodents', 'daylight', 'mating']
contextually_linked_to_either = sorted(contextually_linked_to_crepuscular +
contextually_linked_to_metamorphosis)
self.assertEqual(sorted(contextually_linked_words(['crepuscular', 'metamorphosis'], sample_size=None)),
contextually_linked_to_either)
results = contextually_linked_words(['crepuscular', 'metamorphosis'])
self.assertEqual(len(results), 6)
self.assertTrue(set(contextually_linked_to_either).issuperset(set(results)))
def test_contextually_linked_word(self):
self.assertIsNone(contextually_linked_word('nonexistentword'))
contextually_linked_to_metamorphosis = ['kafka', 'lamprey', 'larva', 'metamorphose', 'narcissus', 'polyp',
'polyps', 'pupa', 'pupal', 'tadpole']
self.assertIn(contextually_linked_word('metamorphosis'), contextually_linked_to_metamorphosis)
def test_frequently_following_words(self):
self.assertEqual(frequently_following_words('nonexistentword'), [])
frequently_following_magic = ['about', 'against', 'among', 'and', 'angle', 'are', 'art', 'arts', 'box',
'bullet', 'bullets', 'but', 'can', 'carpet', 'charm', 'charms', 'circle', 'city',
'could', 'flute', 'for', 'formula', 'formulas', 'from', 'had', 'has', 'influence',
'into', 'johnson', 'key', 'kingdom', 'lamp', 'lantern', 'marker', 'markers',
'may', 'mirror', 'moment', 'mountain', 'name', 'number', 'numbers', 'potion',
'power', 'powers', 'realism', 'ring', 'rites', 'school', 'show', 'spell',
'spells', 'square', 'squares', 'sword', 'than', 'that', 'the', 'touch', 'trick',
'tricks', 'wand', 'was', 'were', 'when', 'which', 'will', 'with', 'word', 'words',
'world', 'would']
results = frequently_following_words('magic', sample_size=None)
self.assertEqual(sorted(results), frequently_following_magic)
results = frequently_following_words('magic', sample_size=None, datamuse_api_max=None)
self.assertGreater(len(results), 20)
self.assertTrue(set(results).issuperset(set(frequently_following_magic)))
results = frequently_following_words('magic', sample_size=6)
self.assertEqual(len(results), 6)
self.assertTrue(set(frequently_following_magic).issuperset(set(results)))
frequently_following_Dadaist = ['activities', 'and', 'art', 'artist', 'artists', 'collage', 'collages',
'experiments', 'group', 'hugo', 'influence', 'kurt', 'manifesto', 'marcel',
'movement', 'nihilism', 'painter', 'performance', 'play', 'poem', 'poems',
'poet', 'poetry', 'poets', 'raoul', 'review', 'spirit', 'tradition', 'tristan',
'who', 'work', 'works']
ff_either = sorted(frequently_following_magic + [word for word in frequently_following_Dadaist
if word not in frequently_following_magic])
self.assertEqual(sorted(frequently_following_words(['magic', 'Dadaist'], sample_size=None)), ff_either)
results = frequently_following_words(['magic', 'Dadaist'])
self.assertEqual(len(results), 8)
self.assertTrue(set(ff_either).issuperset(set(results)))
def test_frequently_following_word(self):
self.assertIsNone(contextually_linked_word('nonexistentword'))
frequently_following_Dadaist = ['activities', 'and', 'art', 'artist', 'artists', 'collage', 'collages',
'experiments', 'group', 'hugo', 'influence', 'kurt', 'manifesto', 'marcel',
'movement', 'nihilism', 'painter', 'performance', 'play', 'poem', 'poems',
'poet', 'poetry', 'poets', 'raoul', 'review', 'spirit', 'tradition', 'tristan',
'who', 'work', 'works']
self.assertIn(frequently_following_word('Dadaist'), frequently_following_Dadaist)
def test_phonetically_related_words(self):
self.assertRaises(ValueError, lambda: phonetically_related_words(2))
self.assertRaises(ValueError, lambda: phonetically_related_words(2.5))
self.assertRaises(ValueError, lambda: phonetically_related_words(False))
self.assertRaises(ValueError, lambda: phonetically_related_words(None))
self.assertRaises(ValueError, lambda: phonetically_related_words(['a', 'b', None]))
pr_to_poet = ['inchoate', 'opiate', 'payout', 'pet', 'peyote', 'pit', 'poached', 'poets', 'poked', 'post',
'putt']
self.assertEqual(sorted(phonetically_related_words('poet', sample_size=None)), pr_to_poet)
results = phonetically_related_words('poet', sample_size=5)
self.assertEqual(len(sorted(results)), 5)
self.assertTrue(set(sorted(pr_to_poet)).issuperset(set(results)))
expected_pr_words = sorted(pr_to_poet + ['eon', 'gnawing', 'knowing', 'kneeing', 'naan', 'non', 'noun'])
self.assertEqual(sorted(phonetically_related_words(['poet', 'neon'], sample_size=None)), expected_pr_words)
def test_related_rare_words(self):
self.assertRaises(ValueError, lambda: related_rare_words(2))
self.assertRaises(ValueError, lambda: related_rare_words(2.5))
self.assertRaises(ValueError, lambda: related_rare_words(False))
self.assertRaises(ValueError, lambda: related_rare_words(None))
rr_to_comical = ['absurdist', 'antic', 'artless', 'campy', 'canticle', 'cliched', 'clownish', 'cockle',
'cringeworthy', 'hackneyed', 'histrionic', 'humourous', 'jokey', 'parodic', 'puerile',
'risible', 'sophomoric', 'surrealistic', 'uneconomical', 'uproarious']
results = related_rare_words('comical', sample_size=None)
self.assertEqual(len(results), 20)
self.assertEqual(sorted(results), rr_to_comical)
results = related_rare_words('comical', sample_size=None, rare_word_population_max=None)
self.assertGreater(len(results), 20)
self.assertTrue(set(results).issuperset(set(rr_to_comical)))
results = related_rare_words('comical', sample_size=6)
self.assertEqual(len(results), 6)
self.assertTrue(set(results).issuperset(set(results)))
rr_to_dinosaur = ['allosaurus', 'apatosaurus', 'archaeopteryx', 'brachiosaurus', 'clade', 'crocodilian',
'diplodocus', 'dodos', 'humidor', 'ichthyosaur', 'iguanodon', 'megafauna', 'peccary',
'pterosaur', 'robustus', 'sauropod', 'stevedore', 'theropod', 'trilobite', 'tyrannosaur']
rr_to_either = sorted(rr_to_comical + rr_to_dinosaur)
self.assertEqual(sorted(related_rare_words(['comical', 'dinosaur'], sample_size=None)), rr_to_either)
results = related_rare_words(['comical', 'dinosaur'])
self.assertEqual(len(results), 8)
self.assertTrue(set(rr_to_either).issuperset(set(results)))
def test_related_rare_word(self):
result_possibilities = ['artless', 'canticle', 'clownish', 'histrionic', 'humourous', 'parodic', 'risible',
'sophomoric', 'uneconomical', 'uproarious']
self.assertIn(related_rare_word('comical'), result_possibilities)
class TestStochasticJolasticWordGenerator(unittest.TestCase):
def test_random_nonrhyme(self):
with open('tests/random_nonrhyme_possible_results.txt') as f:
# There are over 5000 possible results even with rare words as input since this function sometimes calls
# a random lexigen function on the result of a random lexigen function (and there are already ~70 possible
# results even if only one function is called.
possible_results = f.read().splitlines()
markovgen = StochasticJolasticWordGenerator()
for i in range(6):
result = markovgen.random_nonrhyme(['pataphysics', 'Dadaist'])
self.assertIn(result, possible_results)
def test_nonlast_word(self):
with open('tests/random_nonrhyme_possible_results.txt') as f:
possible_randalg_results = f.read().splitlines()
words_for_sampling = ['fervent', 'mutants', 'dazzling', 'flying', 'saucer', 'milquetoast']
markovgen = StochasticJolasticWordGenerator()
input_words = ['pataphysics', 'Dadaist']
for i in range(2):
result = markovgen.nonlast_word_of_markov_line(input_words[i:], words_for_sampling)
self.assertTrue(result in possible_randalg_results or result in words_for_sampling or
result in markovgen.connector_choices)
self.assertIn(markovgen.nonlast_word_of_markov_line(input_words[i:]), possible_randalg_results)
def test_last_word(self):
with open('tests/random_nonrhyme_possible_results.txt') as f:
possible_randalg_results = f.read().splitlines()
markovgen = StochasticJolasticWordGenerator()
input_words = ['pataphysics', 'Dadaist']
for i in range(2):
result = markovgen.last_word_of_markov_line(input_words[i:], max_length=6)
self.assertIn(result, possible_randalg_results)
self.assertLessEqual(len(result), 6)
rhyming_result = markovgen.last_word_of_markov_line(input_words[i:], rhyme_with='shudder', max_length=10)
self.assertLessEqual(len(rhyming_result), 10)
self.assertIn(rhyming_result, rhymes('shudder', sample_size=None))
class TestPoemGenerator(unittest.TestCase):
def get_possible_word_list(self, input_word_list):
possible_line_enders = ['.', ',', '!', '?', '...']
possible_words = input_word_list.copy()
for line_ender in possible_line_enders:
for word in input_word_list:
# Since we are testing using .split(), the list of possible words should include f'{word + line ender}'
possible_words.append(word + line_ender)
return possible_words
def test_poem_line_from_word_list(self):
input_word_list = ['crypt', 'crypts', 'crypt', 'ghost', 'ghosts', 'lost', 'time', 'times']
possible_words = self.get_possible_word_list(input_word_list)
possible_connectors = [',', '...', '&', 'and', 'or', '->']
pgen = PoemGenerator()
for i in range(5): # Generate 5 random lines of poetry and test them.
max_line_length = 35 + 5 * i
poem_line = pgen.poem_line_from_word_list(input_word_list, max_line_length=max_line_length)
# First character of line should not be a space as indents are handled by the poem_from_word_list function
self.assertNotEqual(poem_line[0], ' ')
# Should not have newlines as these are handled by the poem_from_word_list function
self.assertNotIn('\n', poem_line)
# When split, everything should derive from the possible word list
self.assertTrue(set(possible_words + possible_connectors).issuperset(set(poem_line.split())))
word, last_word = None, None
for text in poem_line.split():
word = re.match(r'[a-zA-Z]*', text).group()
# No word should be too similar to the preceding word
if word and last_word:
self.assertFalse(too_similar(word, last_word))
last_word = word
# Line length should not exceed maximum line length
self.assertTrue(len(poem_line) <= max_line_length)
def test_poem_from_word_list(self):
input_word_list = ['crypt', 'sleep', 'ghost', 'time']
pgen = PoemGenerator()
poems = [pgen.poem_from_word_list(input_word_list, limit_line_to_one_input_word=True),
pgen.poem_from_word_list(input_word_list, num_lines=8)]
expected_newlines_in_poem = [5, 7]
for i, poem in enumerate(poems):
# 5 lines = 5 newline characters since one ends the poem
self.assertEqual(poem.count('\n'), expected_newlines_in_poem[i])
poem_lines = poem.split('\n')
for string in poem_lines:
indent_length = len(string) - len(string.lstrip())
if indent_length != 0:
# Indent length should not repeat... unless there's no indent
self.assertNotEqual(indent_length, last_indent_length)
last_indent_length = indent_length
last_line_words = [word for word in poem_lines[-1].split(' ') if word != '']
self.assertEqual(len(last_line_words), 2)
self.assertIn(last_line_words[0], input_word_list[:-1])
self.assertEqual(last_line_words[1], 'time')
def test_poem_from_markov(self):
input_words = ['chalice', 'crime', 'coins', 'spectacular', 'dazzle', 'enigma']
pgen = PoemGenerator()
poem = pgen.poem_from_markov(input_words=input_words, min_line_words=7, max_line_words=10, num_lines=8,
max_line_length=66)
self.assertEqual(len(poem.lines), 8)
for line in poem.lines:
words = line.split(" ")
self.assertGreaterEqual(len(words), 7)
self.assertLessEqual(len(words), 10)
self.assertLessEqual(len(line), 71)
# def test_poem_line_from_markov(self):
# pgen = PoemGenerator()
# words_for_sampling = ['fervent', 'mutants', 'dazzling', 'flying', 'saucer', 'milquetoast']
# line = pgen.poem_line_from_markov('surrealist', num_words=8, rhyme_with=None,
# words_for_sampling=words_for_sampling, max_line_length=40)
# words = line.split(' ')
# self.assertLessEqual(len(line), 40)
# self.assertLessEqual(len(words), 8)
# markovgen = StochasticJolasticWordGenerator()
# self.assertNotIn(words[-1], markovgen.common_words)
# similarity_checks = list(itertools.combinations(words, 2))
# for word_pair in similarity_checks:
# self.assertFalse(too_similar(word_pair[0], word_pair[1]))
# line = pgen.poem_line_from_markov('surrealist', num_words=8, rhyme_with='bell',
# words_for_sampling=words_for_sampling, max_line_length=None)
# words = line.split(' ')
# self.assertEqual(len(words), 8)
# self.assertIn(words[-1], rhymes('bell', sample_size=None))
# self.assertNotIn(line.split(' ')[-1], markovgen.common_words)
# similarity_checks = list(itertools.combinations(words, 2))
# for word_pair in similarity_checks:
# self.assertFalse(too_similar(word_pair[0], word_pair[1]))
# line = pgen.poem_line_from_markov('surrealist', num_words=8, rhyme_with='unrhymable',
# words_for_sampling=words_for_sampling, max_line_length=None)
# words = line.split(' ')
# self.assertEqual(len(words), 8)
# self.assertNotIn(words[-1], markovgen.common_words)
# similarity_checks = list(itertools.combinations(words, 2))
# for word_pair in similarity_checks:
# self.assertFalse(too_similar(word_pair[0], word_pair[1]))
class TestPDFPNGGenerator(unittest.TestCase):
def test_get_font_sizes(self):
pdfgen = PDFGenerator()
font_size = pdfgen.get_font_size('abra cadabra hocus pocus bananas eating locusts') # 47 characters
self.assertEqual(font_size, 16)
font_size = pdfgen.get_font_size('this line is 26 characters')
self.assertIn(font_size, [16, 18, 20])
font_size = pdfgen.get_font_size('this line is short')
self.assertIn(font_size, pdfgen.default_font_sizes)
def test_get_max_x_coordinate(self):
pdfgen = PDFGenerator()
x_coordinate = pdfgen.get_max_x_coordinate('this line is 26 characters', 'Arial', 24)
self.assertEqual(x_coordinate, 60)
x_coordinate = pdfgen.get_max_x_coordinate('this line is thirty-five characters', 'Arial', 21)
self.assertEqual(x_coordinate, 60)
x_coordinate = pdfgen.get_max_x_coordinate('this line short', 'Courier', 18)
self.assertEqual(x_coordinate, 60)
x_coordinate = pdfgen.get_max_x_coordinate('this line 18 chars', 'Arial', 20)
self.assertEqual(x_coordinate, 130)
x_coordinate = pdfgen.get_max_x_coordinate('this line is 21 chars', 'Arial', 15)
self.assertEqual(x_coordinate, 130)
x_coordinate = pdfgen.get_max_x_coordinate('short', 'Arial', 15)
self.assertEqual(x_coordinate, 280)
pdfgen.orientation = 'portrait'
x_coordinate = pdfgen.get_max_x_coordinate('this line 18 chars', 'Arial', 24)
self.assertEqual(x_coordinate, 30)
x_coordinate = pdfgen.get_max_x_coordinate('this line is thirty-five characters', 'Arial', 21)
self.assertEqual(x_coordinate, 30)
x_coordinate = pdfgen.get_max_x_coordinate('this line short', 'Courier', 18)
self.assertEqual(x_coordinate, 30)
x_coordinate = pdfgen.get_max_x_coordinate('this line 18 chars', 'Arial', 20)
self.assertEqual(x_coordinate, 100)
x_coordinate = pdfgen.get_max_x_coordinate('this line is 21 chars', 'Arial', 15)
self.assertEqual(x_coordinate, 100)
x_coordinate = pdfgen.get_max_x_coordinate('short', 'Arial', 15)
self.assertEqual(x_coordinate, 250)
def test_set_filename(self):
pdfgen = PDFGenerator()
input_words = ['chalice', 'crime', 'coins', 'spectacular', 'dazzle', 'enigma']
self.assertEqual(pdfgen.set_filename(input_words), 'chalice,crime,coins,spectacular,dazzle,enigma.pdf')
self.assertEqual(pdfgen.set_filename(input_words, file_extension='png'),
'chalice,crime,coins,spectacular,dazzle,enigma.png')
# def test_generate_png(self):
# try:
# os.remove('tests/test.png')
# except Exception:
# pass
# pdfgen = PDFGenerator()
# pdfgen.generate_png('tests/test.pdf')
# self.assertEqual(os.path.isfile('tests/test.png'), True)
# os.remove('tests/test.png')
class TestChaoticConcretePoemPDFGenerator(unittest.TestCase):
def test_generate_pdf(self):
pdfgen = ChaoticConcretePoemPDFGenerator()
test_input = 'chalice crime coins spectacular'
with patch('builtins.input', return_value=test_input):
pdfgen.generate_pdf()
self.assertEqual(len(pdfgen.drawn_strings), 58)
for ds in pdfgen.drawn_strings:
self.assertGreaterEqual(ds.x, 15)
self.assertLessEqual(ds.x, 440)
self.assertGreaterEqual(ds.y, 15)
self.assertLessEqual(ds.y, 800)
self.assertIsNotNone(ds.font)
self.assertIn(ds.font_size, pdfgen.default_font_sizes)
self.assertTrue(type(ds.rgb), tuple)
class TestCharacterSoupPoemPDFGenerator(unittest.TestCase):
def test_generate_pdf(self):
pdfgen = CharacterSoupPoemPDFGenerator()
pdfgen.generate_pdf()
self.assertGreaterEqual(len(pdfgen.drawn_strings), 300) # Random, varies
for ds in pdfgen.drawn_strings:
self.assertGreaterEqual(ds.x, 10)
self.assertLessEqual(ds.x, 560)
self.assertGreaterEqual(ds.y, 10)
self.assertLessEqual(ds.y, 790)
self.assertIsNotNone(ds.font)
self.assertIn(ds.font_size, list(range(6, 73)))
self.assertTrue(type(ds.rgb), tuple)
class TestStopwordSoupPoemPDFGenerator(unittest.TestCase):
def test_generate_pdf(self):
pdfgen = StopwordSoupPoemPDFGenerator()
pdfgen.generate_pdf()
self.assertGreaterEqual(len(pdfgen.drawn_strings), 157)
for ds in pdfgen.drawn_strings:
self.assertGreaterEqual(ds.x, 10)
self.assertLessEqual(ds.x, 490)
self.assertGreaterEqual(ds.y, 10)
self.assertLessEqual(ds.y, 790)
self.assertIsNotNone(ds.font)
self.assertIn(ds.font_size, list(range(6, 41)))
self.assertTrue(type(ds.rgb), tuple)
class TestMarkovPoemPDFGenerator(unittest.TestCase):
def test_generate_pdf(self):
pdfgen = MarkovPoemPDFGenerator()
test_input = 'chalice crime coins spectacular'
with patch('builtins.input', return_value=test_input):
pdfgen.generate_pdf()
y_coord = 550
for ds in pdfgen.drawn_strings:
self.assertGreaterEqual(ds.x, 15)
self.assertLessEqual(ds.x, 250)
self.assertEqual(ds.y, y_coord)
self.assertIsNotNone(ds.font)
self.assertIsNotNone(ds.font_size)
self.assertTrue(type(ds.rgb), tuple)
y_coord -= 32
class TestFuturistPoemPDFGenerator(unittest.TestCase):
def test_generate_pdf(self):
pdfgen = FuturistPoemPDFGenerator()
test_input = 'chalice crime coins spectacular'
with patch('builtins.input', return_value=test_input):
pdfgen.generate_pdf()
y_coord = 60
for ds in pdfgen.drawn_strings:
self.assertGreaterEqual(ds.x, 15)
self.assertLessEqual(ds.x, 280)
self.assertEqual(ds.y, y_coord)
self.assertIsNotNone(ds.font)
self.assertIsNotNone(ds.font_size)
self.assertTrue(type(ds.rgb), tuple)
y_coord += 31
class TextExtractionTestCase(unittest.TestCase):
def test_validate_url(self):
self.assertRaises(Exception, lambda: validate_url(2))
self.assertRaises(Exception, lambda: validate_url(2.5))
self.assertRaises(Exception, lambda: validate_url(None))
self.assertRaises(Exception, lambda: validate_url(False))
self.assertRaises(Exception, lambda: validate_url('test'))
validate_url('http://test')
validate_url('http://test.com')
self.assertRaises(Exception, lambda: validate_url(
'http://test.com', expected_netloc='gutenberg.org'))
self.assertRaises(Exception, lambda: validate_url(
'https://archive.org/stream/leschantsdemaldo00laut/leschantsdemaldo00laut_djvu.txt',
expected_netloc='gutenberg.org'))
validate_url('https://www.gutenberg.org/ebooks/11', expected_netloc='gutenberg.org')
validate_url('https://www.gutenberg.org/files/11/11-h/11-h.htm', expected_netloc='gutenberg.org')
validate_url(
'https://www.gutenberg.org/files/11/11-pdf.pdf?session_id=07199a8410f9c36952586dd2a3e108a082fc54e7',
expected_netloc='gutenberg.org'
)
self.assertRaises(Exception, lambda: validate_url('https://www.gutenberg.org/ebooks/11',
expected_netloc='archive.org'))
validate_url('https://archive.org/stream/CalvinoItaloCosmicomics/Calvino-Italo-Cosmicomics_djvu.txt',
expected_netloc='archive.org')
def test_get_internet_archive_document(self):
self.assertRaises(Exception, lambda: get_internet_archive_document(2))
self.assertRaises(Exception, lambda: get_internet_archive_document(2.5))
self.assertRaises(Exception, lambda: get_internet_archive_document(None))
self.assertRaises(Exception, lambda: get_internet_archive_document(False))
self.assertRaises(Exception, lambda: get_internet_archive_document('test'))
self.assertRaises(Exception, lambda: get_internet_archive_document('http://test'))
self.assertRaises(Exception, lambda: get_internet_archive_document('http://test.com'))
self.assertRaises(Exception, lambda: get_internet_archive_document(
'https://www.gutenberg.org/ebooks/11'))
cosmicomics = get_internet_archive_document(
'https://archive.org/stream/CalvinoItaloCosmicomics/Calvino-Italo-Cosmicomics_djvu.txt')
file = open('tests/Cosmicomics.txt', 'r')
mock_cosmicomics = file.read()
file.close()
self.assertEqual(cosmicomics, mock_cosmicomics)
def test_get_gutenberg_document(self):
self.assertRaises(Exception, lambda: get_gutenberg_document(2))
self.assertRaises(Exception, lambda: get_gutenberg_document(2.5))
self.assertRaises(Exception, lambda: get_gutenberg_document(None))
self.assertRaises(Exception, lambda: get_gutenberg_document(False))
self.assertRaises(Exception, lambda: get_gutenberg_document('test'))
self.assertRaises(Exception, lambda: get_gutenberg_document('http://test'))
self.assertRaises(Exception, lambda: get_gutenberg_document('http://test.com'))
self.assertRaises(Exception, lambda: get_gutenberg_document(
'https://archive.org/stream/CalvinoItaloCosmicomics/Calvino-Italo-Cosmicomics_djvu.txt'))
alice_in_wonderland = get_gutenberg_document('https://www.gutenberg.org/ebooks/11')
file = open('tests/AliceinWonderland.txt', 'r')
mock_aiw = file.read()
file.close()
self.assertEqual(alice_in_wonderland, mock_aiw)
def test_random_gutenberg_document(self):
for i in range(3):
doc = random_gutenberg_document()
self.assertEqual(type(doc), str)
self.assertGreater(len(doc), 0)
class ParsedTextTestCase(unittest.TestCase):
def test_create(self):
file = open('tests/AliceinWonderland.txt', 'r')
doc = ParsedText(file.read())
file.close()
self.assertEqual(len(doc.sentences), 970)
self.assertEqual(len(doc.paragraphs), 798)
file = open('tests/Cosmicomics.txt', 'r')
doc = ParsedText(file.read())
file.close()
self.assertEqual(len(doc.sentences), 2146)
self.assertEqual(len(doc.paragraphs), 776)
def test_random_sentence(self):
file = open('tests/Cosmicomics.txt', 'r')
doc = ParsedText(file.read())
file.close()
random_sentence = doc.random_sentence()
self.assertIn(random_sentence, doc.sentences)
num_tokens = len([token.text for token in spacy_nlp(random_sentence)])
self.assertGreaterEqual(num_tokens, 1)
random_sentence = doc.random_sentence(minimum_tokens=40)
self.assertIn(random_sentence, doc.sentences)
num_tokens = len([token.text for token in spacy_nlp(random_sentence)])
self.assertGreaterEqual(num_tokens, 1)
def test_random_sentences(self):
file = open('tests/Cosmicomics.txt', 'r')
doc = ParsedText(file.read())
file.close()
random_sentences = doc.random_sentences()
self.assertEqual(len(random_sentences), 5)
for random_sentence in random_sentences:
self.assertIn(random_sentence, doc.sentences)
num_tokens = len([token.text for token in spacy_nlp(random_sentence)])
self.assertGreaterEqual(num_tokens, 1)
random_sentences = doc.random_sentences(num=3, minimum_tokens=35)
self.assertEqual(len(random_sentences), 3)
for random_sentence in random_sentences:
self.assertIn(random_sentence, doc.sentences)
num_tokens = len([token.text for token in spacy_nlp(random_sentence)])
self.assertGreaterEqual(num_tokens, 35)
def test_random_paragraph(self):
file = open('tests/Cosmicomics.txt', 'r')
doc = ParsedText(file.read())
file.close()
random_paragraph = doc.random_paragraph()
num_sentences = len(sent_detector.tokenize(random_paragraph))
self.assertGreaterEqual(num_sentences, 3)
random_paragraph = doc.random_paragraph(minimum_sentences=6)
num_sentences = len(sent_detector.tokenize(random_paragraph))
self.assertGreaterEqual(num_sentences, 6)
class TextProcessingTestCase(unittest.TestCase):
def test_reconcile_replacement_word(self):
# No changes expected to the replacement word in these two cases
self.assertEqual(reconcile_replacement_word('cat', 'NN', 'dog', 'NN'), 'dog')
self.assertEqual(reconcile_replacement_word('cats', 'NNS', 'dogs', 'NNS'), 'dogs')
# Just whitespace changes when both the original word and the replacement are singular or both are plural
self.assertEqual(reconcile_replacement_word(' shark', 'NN', 'crow', 'NN'), ' crow')
self.assertEqual(reconcile_replacement_word('street ', 'NN', 'shark', 'NN'), 'shark ')
self.assertEqual(reconcile_replacement_word(' bicycle ', 'NN', 'lemur', 'NN'), ' lemur ')
self.assertEqual(reconcile_replacement_word(' sharks', 'NNS', 'crows', 'NNS'), ' crows')
self.assertEqual(reconcile_replacement_word('streets ', 'NNS', 'sharks', 'NNS'), 'sharks ')
self.assertEqual(reconcile_replacement_word(' bicycles ', 'NNS', 'lemurs', 'NNS'), ' lemurs ')
# Pluralize the replacement noun in these cases
self.assertEqual(reconcile_replacement_word('cats', 'NNS', 'dog', 'NN'), 'dogs')
self.assertEqual(reconcile_replacement_word(' sharks', 'NNS', 'crow', 'NN'), ' crows')
self.assertEqual(reconcile_replacement_word('streets ', 'NNS', 'shark', 'NN'), 'sharks ')
self.assertEqual(reconcile_replacement_word(' bicycles ', 'NNS', 'lemur', 'NN'), ' lemurs ')
# Singularize the replacement word in these cases
self.assertEqual(reconcile_replacement_word('cat', 'NN', 'dogs', 'NNS'), 'dog')
self.assertEqual(reconcile_replacement_word(' shark', 'NN', 'crows', 'NNS'), ' crow')
self.assertEqual(reconcile_replacement_word('street ', 'NN', 'sharks', 'NNS'), 'shark ')
self.assertEqual(reconcile_replacement_word(' bicycle ', 'NN', 'lemurs', 'NNS'), ' lemur ')
def test_swap_parts_of_speech(self):
great_expectations_sample = ''.join([
"It was then I began to understand that everything in the room had stopped, like the watch and the ",
"clock, a long time ago. I noticed that Miss Havisham put down the jewel exactly on the spot from which ",
"she had taken it up. As Estella dealt the cards, I glanced at the dressing-table again, and saw that the",
" shoe upon it, once white, now yellow, had never been worn. I glanced down at the foot from which the ",
"shoe was absent, and saw that the silk stocking on it, once white, now yellow, had been trodden ragged. ",
"Without this arrest of everything, this standing still of all the pale decayed objects, not even the ",
"withered bridal dress on the collapsed form could have looked so like grave-clothes, or the long veil ",
"so like a shroud."
]) # a novel by Charles Dickens
great_expectations_nouns = ['everything', 'room', 'watch', 'clock', 'time', 'jewel', 'spot', 'cards',
'dressing', 'table', 'shoe', 'foot', 'silk', 'arrest', 'objects', 'dress', 'form',
'grave', 'clothes', 'veil', 'shroud']
great_expectations_adjectives = ['long', 'white', 'yellow', 'absent', 'pale', 'decayed', 'bridal']
spacy_nlp = spacy.load('en_core_web_sm', disable=['ner'])
#spacy_nlp.remove_pipe("parser")
tokenized_ge_sample = spacy_nlp(great_expectations_sample)
great_expectations_pos_by_word_number = {}
for i,token in enumerate(tokenized_ge_sample):
great_expectations_pos_by_word_number[i] = token.pos_
shunned_house_sample = ''.join([
"Yet after all, the sight was worse than I had dreaded. There are horrors beyond horrors, and this was one",
" of those nuclei of all dreamable hideousness which the cosmos saves to blast an accursed and unhappy ",
"few. Out of the fungus-ridden earth steamed up a vaporous corpse-light, yellow and diseased, which ",
"bubbled and lapped to a gigantic height in vague outlines half human and half monstrous, through which I ",
"could see the chimney and fireplace beyond. It was all eyes—wolfish and mocking—and the rugose insectoid ",
"head dissolved at the top to a thin stream of mist which curled putridly about and finally vanished up ",
"the chimney. I say that I saw this thing, but it is only in conscious retrospection that I ever ",
"definitely traced its damnable approach to form. At the time, it was to me only a seething, dimly ",
"phosphorescent cloud of fungous loathsomeness, enveloping and dissolving to an abhorrent plasticity the ",
"one object on which all my attention was focused."
]) # a story by H.P. Lovecraft
tokenized_shunned_house_sample = spacy_nlp(great_expectations_sample)
shunned_house_pos_by_word_number = {}
for i, token in enumerate(tokenized_shunned_house_sample):
shunned_house_pos_by_word_number[i] = token.pos_
shunned_house_nouns = ['sight', 'horrors', 'nuclei', 'hideousness', 'cosmos', 'fungus', 'earth',
'height', 'outlines', 'half', 'chimney', 'fireplace', 'eyes', 'wolfish', 'mocking',
'head', 'top', 'stream', 'mist', 'thing', 'retrospection', 'approach', 'time',
'cloud', 'loathsomeness', 'enveloping', 'dissolving', 'abhorrent', 'plasticity',
'object', 'attention', 'light', 'corpse', 'insectoid', 'seething']
shunned_house_adjectives = ['worse', 'dreamable', 'accursed', 'unhappy', 'few', 'vaporous', 'yellow',
'diseased', 'gigantic', 'vague', 'human', 'monstrous', 'rugose',
'thin', 'conscious', 'damnable', 'phosphorescent', 'fungous']
shunned_house_pos_by_word_number = {}
# Just test swapping nouns and adjectives for now
new_ge_sample, new_sh_sample = swap_parts_of_speech(great_expectations_sample, shunned_house_sample)
print("\n\nAdjectives and Verbs Taken From Lovecraft And Swapped into Great Expectations:")
print(new_ge_sample + "\n")
print("Adjectives and Verbs Taken From Great Expectations And Swapped into Great Lovecraft:")
print(new_sh_sample)
new_ge_doc, new_sh_doc = spacy_nlp(new_ge_sample), spacy_nlp(new_ge_sample)
# Since the Dickens sample has fewer nouns and adjectives, all the Dickens nouns and adjectives
# should be replaced by Lovecraft's words
inflector = inflect.engine()
for i, token in enumerate(new_ge_doc):
expected_pos = great_expectations_pos_by_word_number.get(i, None)
if expected_pos is 'NOUN':
self.assertTrue(token.text in shunned_house_nouns or inflector.plural(token.text) in
shunned_house_nouns or inflector.singular_noun(token.text) in shunned_house_nouns)
elif token.pos is 'ADJ':
self.assertTrue(token.text in shunned_house_adjectives)
for i, token in enumerate(new_sh_doc):
expected_pos = shunned_house_pos_by_word_number.get(i, None)
if expected_pos is 'ADJ':
# Since there are only 7 adjectives in the Dickens passage only that many substitutions can occur.
self.assertTrue(token.text in great_expectations_adjectives or i > 6)
elif token.pos is 'NOUN':
# Since there are only 21 nouns in the Dickens passage only that many substitutions can occur.
self.assertTrue((token.text in great_expectations_nouns or inflector.plural(token.text)
in great_expectations_nouns or inflector.singular_noun(token.text)
in great_expectations_nouns) or i > 20)
def test_markov(self):
# This does NOT test the markovify library itself, as that's out of scope and we can assume it does what it says
self.assertRaises(Exception, lambda: markov(2))
self.assertRaises(Exception, lambda: markov(2.5))
self.assertRaises(Exception, lambda: markov(None))
self.assertRaises(Exception, lambda: markov(False))
file = open('tests/Cosmicomics.txt', 'r')
cosmicomics = file.read()
file.close()
# Sentence tokenization for Markov chains is kinda screwed up because they're nonsense so just verify we have
# the right number of sentences without NLP
output_sentences = markov(cosmicomics)
print("\n\nMarkov generated text (n-gram size = 1) from entirety of 'Cosmicomics' by Italo Calvino:\n" +
" ".join(output_sentences) + "\n")
self.assertEqual(len(output_sentences), 5)
output_sentences = markov(cosmicomics, ngram_size=2, num_output_sentences=3)
print("Markov generated text (n-gram size = 2) from entirety of 'Cosmicomics' by Italo Calvino:\n" +
" ".join(output_sentences) + "\n")
self.assertEqual(len(output_sentences), 3)
file = open('tests/AliceinWonderland.txt', 'r')
alice_in_wonderland = file.read()
output_sentences = markov([alice_in_wonderland, cosmicomics])
print("Markov generated text (n-gram size = 1) from entirety of 'Cosmicomics' & 'Alice in Wonderland':\n" +
" ".join(output_sentences) + "\n")
self.assertEqual(len(output_sentences), 5)
output_sentences = markov([alice_in_wonderland, cosmicomics], ngram_size=2, num_output_sentences=3)
print("Markov generated text (n-gram size = 2) from entirety of 'Cosmicomics' & 'Alice in Wonderland':\n" +
" ".join(output_sentences) + "\n")
self.assertEqual(len(output_sentences), 3)
def test_cutup(self):
burroughs_sample1 = "".join([
"At a surrealist rally in the 1920's Tristan Tzara the man from nowhere proposed to create a poem on the ",
"spot by pulling words out of a hat. A riot ensued wrecked the theatre. Andre Breton expelled Tristan ",
"Tzara from the movement and grounded the cut ups on the Freudian couch."
]) # Source: https://www.writing.upenn.edu/~afilreis/88v/burroughs-cutup.html
cutouts = cutup(burroughs_sample1)
print("\n\nWilliam S. Burroughs Computer Cut-Up #1:\n" + " ".join(cutouts))
for cutout in cutouts:
# Cutout should be between the assumed min and max lengths unless it was cut out sequentially last from
# the end of the book. This is true for all loops in this test.s
self.assertTrue(3 <= len(cutout.split()) <= 7 or cutout.split()[-1] == burroughs_sample1.split()[-1])
self.assertIn(cutout, burroughs_sample1)
cutouts = cutup(burroughs_sample1, min_cutout_words=2, max_cutout_words=10)
print("\nnWilliam S. Burroughs Computer Cut-Up #2:\n" + " ".join(cutouts))
for cutout in cutouts:
self.assertTrue(2 <= len(cutout.split()) <= 10 or cutout.split()[-1] == burroughs_sample1.split()[-1])
self.assertIn(cutout, burroughs_sample1)
burroughs_sample2 = "".join([
"All writing is in fact cut ups. A collage of words read heard overhead. What else? Use of scissors ",
"renders the process explicit and subject to extension and variation. Clear classical prose can be ",
"composed entirely of rearranged cut ups. Cutting and rearranging a page of written words introduces ",
"a new dimension into writing enabling the writer to turn images in cineramic variation."
])
cutouts = cutup([burroughs_sample1, burroughs_sample2])
print("\nWilliam S. Burroughs Computer Cut-Up #3:\n" + " ".join(cutouts))
for cutout in cutouts:
# if not(3 <= len(cutout.split()) <= 7 or cutout.split()[-1] == burroughs_sample1.split()[-1] or cutout == burroughs_sample2.split()[-1]):
# import ipdb; ipdb.set_trace()
self.assertTrue(len(cutout.split()) <= 7 or cutout.split()[-1] == burroughs_sample1.split()[-1] or
cutout == burroughs_sample2.split()[-1])
self.assertTrue(cutout in burroughs_sample1 or cutout in burroughs_sample2)
cutouts = cutup([burroughs_sample1, burroughs_sample2], min_cutout_words=2, max_cutout_words=10)
print("\nWilliam S. Burroughs Computer Cut-Up #4:\n" + " ".join(cutouts))
for cutout in cutouts:
self.assertTrue(2 <= len(cutout.split()) <= 10 or cutout.split()[-1] == burroughs_sample1.split()[-1] or
cutout == burroughs_sample2.split()[-1])
self.assertTrue(cutout in burroughs_sample1 or cutout in burroughs_sample2)