-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathcrawl.py
273 lines (244 loc) · 8.48 KB
/
crawl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import argparse
import json
import logging
import os
import random
import time
from collections import deque
import numpy as np
import yaml
from corpus_interface import ClueWeb22Api, DocumentAnnotation, UnifiedGetter
from crawler import Crawler
from document_rater import (
DocumentLengthRater,
DocumentRater,
EnsembleRater,
FasttextRater,
InlinkCountRater,
RandomRater,
)
from normalizer import MinMaxNormalizer, ZScoreNormalizer
from utils import eval_and_plot, log_time
from wandb_logger import WandbLogger
logger = logging.getLogger(__name__)
def initialize_quality_raters(args, unified_getter: UnifiedGetter) -> list[DocumentRater]:
quality_raters = []
for rating_method in args.rating_methods:
type_ = rating_method["type"]
other_args = {k: v for k, v in rating_method.items() if k != "type"}
if "num_workers" not in other_args:
other_args["num_workers"] = args.num_workers # Default to global num_workers
normalizer = None
if "normalizer" in other_args:
normalizer_type = other_args["normalizer"]["type"]
normalizer_args = {k: v for k, v in other_args["normalizer"].items() if k != "type"}
if normalizer_type == "zscore":
normalizer = ZScoreNormalizer(**normalizer_args)
elif normalizer_type == "minmax":
normalizer = MinMaxNormalizer(**normalizer_args)
else:
raise ValueError(f"Unknown normalizer type: {normalizer_type}")
other_args.pop("normalizer")
match type_:
case "random_score":
quality_raters.append(RandomRater(normalizer=normalizer))
case "length":
quality_raters.append(DocumentLengthRater(normalizer=normalizer))
case "inlink_count":
quality_raters.append(
InlinkCountRater(
unified_getter=unified_getter, normalizer=normalizer, **other_args
)
)
case "fasttext_score":
quality_raters.append(FasttextRater(normalizer=normalizer, **other_args))
case "ensemble_score":
pass
case _:
raise ValueError(f"Unknown rating method: {type_}")
for rating_method in args.rating_methods:
if rating_method["type"] == "ensemble_score":
other_args = {k: v for k, v in rating_method.items() if k != "type"}
quality_raters.append(EnsembleRater(**other_args))
break
return quality_raters
def parse_arguments():
parser = argparse.ArgumentParser()
# fmt: off
parser.add_argument(
"mode",
type=str,
choices=["crawl", "rate"],
)
parser.add_argument(
"--config",
type=str,
required=True,
)
parser.add_argument(
"--cw22_root_path",
type=str,
)
parser.add_argument(
"--seed_docs_file",
type=str,
default=None,
)
parser.add_argument(
"--output_dir",
type=str,
)
parser.add_argument(
"--num_selected_docs_per_iter",
type=int,
default=10000,
)
parser.add_argument(
"--max_num_docs",
type=int,
default=1000000,
)
parser.add_argument(
"--num_workers",
type=int,
default=1,
)
parser.add_argument(
"--seed",
type=int,
default=42,
)
parser.add_argument(
"--save_state_every",
type=int,
default=400,
)
parser.add_argument(
"--resume_from_state",
type=str,
default=None,
)
parser.add_argument(
"--max_num_in_mem_docs",
type=int,
default=1000000,
)
parser.add_argument(
"--wandb",
action="store_true",
)
parser.add_argument(
"--wandb_project",
type=str,
)
parser.add_argument(
"--wandb_run_name",
type=str,
default=None,
)
# fmt: on
args, _ = parser.parse_known_args()
config_file = args.config
with open(config_file, "r") as fin:
if config_file.endswith(".yaml") or config_file.endswith(".yml"):
config = yaml.safe_load(fin)
elif config_file.endswith(".json"):
config = json.load(fin)
else:
raise ValueError("Config file must be either yaml or json")
rating_methods = config["rating_methods"]
plots = config.get("plots", [])
config = {k: v for k, v in config.items() if k != "rating_methods"}
parser.set_defaults(**config)
args = parser.parse_args()
args.rating_methods = rating_methods
args.plots = plots
return args
def main():
args = parse_arguments()
print(args)
random.seed(args.seed)
np.random.seed(args.seed)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
wandb_logger = None
if args.wandb:
wandb_logger = WandbLogger(args.wandb_project, args.wandb_run_name, args)
logger.info(f"Number of workers: {args.num_workers}")
DocumentAnnotation.set_compare_method(args.selection_method, args.order)
cw22_api = ClueWeb22Api(args.cw22_root_path)
unified_getter = UnifiedGetter(cw22_api=cw22_api)
quality_raters = initialize_quality_raters(args, unified_getter)
crawler = Crawler(
unified_getter=unified_getter,
quality_raters=quality_raters,
output_dir=args.output_dir,
num_workers=args.num_workers,
wandb_logger=wandb_logger,
max_num_in_mem_docs=args.max_num_in_mem_docs,
)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
if args.mode == "rate":
eval_and_plot(args, crawler)
return
logger.info(f"Target number of docs: {args.max_num_docs}")
iter_num, num_selected_docs = crawler.init_or_resume_state(args.resume_from_state)
logger.info(f"Starting from iteration {iter_num}, total selected docs: {num_selected_docs}")
if iter_num == 0:
logger.info("Initializing seed docs")
seed_docids = []
if args.seed_docs_file is None:
raise ValueError("Seed docs file must be provided")
with open(args.seed_docs_file, "r") as fin:
for line in fin:
seed_docids.append(line.strip())
assert (
len(seed_docids) >= args.num_selected_docs_per_iter
), f"Insufficient seed docs: {len(seed_docids)}"
logger.info(f"Sampling {args.num_selected_docs_per_iter} seed docs")
seed_docids = random.sample(seed_docids, args.num_selected_docs_per_iter)
crawler.put_into_queue(crawler.get_scores_for_docs(seed_docids))
if wandb_logger:
wandb_logger.step()
elapsed_time_each_iter = deque(maxlen=10)
while True:
time_start = time.time()
logger.info(f"ITERATION {iter_num}")
docids = crawler.pop_from_queue(args.num_selected_docs_per_iter)
num_selected_docs += len(docids)
logger.info(
f"Number of selected docs in this iter: {len(docids)}, total: {num_selected_docs} "
f"({num_selected_docs/args.max_num_docs:.2%})"
)
if wandb_logger:
wandb_logger.log(crawled_docs=num_selected_docs)
crawler.write_output(iter_num, docids)
if num_selected_docs >= args.max_num_docs:
logger.info("Reached target number of docs, stopping")
logger.info("Saving final state")
crawler.save_state(iter_num + 1, num_selected_docs)
break
outlinks = crawler.find_outinks(docids)
scores = crawler.get_scores_for_docs(outlinks)
crawler.put_into_queue(scores)
iter_num += 1
elapsed_time = time.time() - time_start
elapsed_time_each_iter.append(elapsed_time)
mean_elapsed_time = sum(elapsed_time_each_iter) / len(elapsed_time_each_iter)
remaining_time = (
mean_elapsed_time
* (args.max_num_docs - num_selected_docs)
/ args.num_selected_docs_per_iter
)
log_time(elapsed_time, remaining_time)
if wandb_logger:
wandb_logger.log(elapsed_time=elapsed_time).step()
if args.save_state_every > 0 and iter_num % args.save_state_every == 0:
logger.info(f"Saving state at iteration {iter_num}")
crawler.save_state(iter_num, num_selected_docs)
if __name__ == "__main__":
main()