-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpspnet.py
156 lines (109 loc) · 5.11 KB
/
pspnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import PIL
from PIL import Image
import matplotlib.pyplot as plt
from libtiff import TIFF
from libtiff import TIFFfile, TIFFimage
from scipy.misc import imresize
import numpy as np
import glob
import cv2
import os
import math
import skimage.io as io
import skimage.transform as trans
from keras.models import *
from keras.layers import *
from keras.applications.resnet50 import ResNet50
from keras.applications.densenet import DenseNet121, DenseNet169, DenseNet201
from keras.applications.inception_v3 import InceptionV3
from keras.applications.inception_resnet_v2 import InceptionResNetV2
from keras.optimizers import *
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras.preprocessing.image import ImageDataGenerator
from keras import backend as keras
import tensorflow as tf
#%matplotlib inline
def resnet(x, input_shape):
# Decreases the dimensions of the input image by a factor of 32
x = ResNet50(include_top=False, weights=None, input_tensor=x, input_shape=(512,512,3)).output
# Upsampling by 2
x = UpSampling2D(size = (2,2))(x)
##x = BatchNormalization()(x)
# Again Upsampling by 2 so that we get an output feature map of size 1/8th of the initial image
x = UpSampling2D(size = (2,2))(x)
##res = BatchNormalization()(x)
x = UpSampling2D(size = (2,2))(x)
return x
def encoder_decoder(inp):
# Encoder layers
ed_conv1 = Conv2D(16, 3, activation = 'relu', padding = 'same')(inp)
bn1 = BatchNormalization()(ed_conv1)
pool1 = MaxPooling2D()(bn1)
ed_conv2 = Conv2D(64, 3, activation = 'relu', padding = 'same')(pool1)
bn2 = BatchNormalization()(ed_conv2)
pool2 = MaxPooling2D()(bn2)
# Decoder layers
up1 = Conv2D(16, 3, activation = 'relu', padding = 'same')(UpSampling2D(size = (2,2))(pool2))
bn3 = BatchNormalization()(up1)
up2 = Conv2D(3, 3, activation = 'relu', padding = 'same')(UpSampling2D(size = (2,2))(bn3))
bn4 = BatchNormalization()(up2)
return bn4
# Bilinear Interpolation
def interpolation(x, shape):
# The height and breadth to which the pooled feature maps are to be interpolated
h_to, w_to = shape
# Bilinear Interpolation (Default method of this tf function is method=ResizeMethod.BILINEAR)
resized = tf.image.resize_images(x, [h_to, w_to], align_corners=True)
return resized
def pool_and_interp(res, level, feature_map_shape):
kernel_strides_dict = {1: 30, 2: 15, 3: 10, 6: 5}
# Kernels and strides according to the level
kernel = (kernel_strides_dict[level], kernel_strides_dict[level])
strides = (kernel_strides_dict[level], kernel_strides_dict[level])
x = AveragePooling2D(kernel, strides=strides)(res)
x = Conv2D(512, (1, 1), strides=(1, 1))(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Lambda(interpolation, arguments={'shape': feature_map_shape})(x)
return x
# Pyramid Pooling Module
def pyramid_pooling_module(res):
# Output tensor shape of Resnet50(Which is 1/8th of input size)
resnet_out_shape = K.int_shape(res)
feature_map_shape = (resnet_out_shape[1], resnet_out_shape[2])
pool_and_interp1 = pool_and_interp(res, 1, feature_map_shape)
pool_and_interp2 = pool_and_interp(res, 2, feature_map_shape)
pool_and_interp3 = pool_and_interp(res, 3, feature_map_shape)
pool_and_interp6 = pool_and_interp(res, 6, feature_map_shape)
# Concatenate the outputs of all the pool_and_interp module and the output feature map of ResNet
concat = Concatenate()([res, pool_and_interp6, pool_and_interp3, pool_and_interp2, pool_and_interp1])
return concat
def PSPNet(n_classes = 3, input_shape = (128, 128, 4)):
# Input to the model
inputs = Input(input_shape)
'''in_shape = inputs.shape
out_shape = (in_shape[1], in_shape[2], 3)'''
# Converting 4 channel input to a 3 channel map using Encoder-Decoder network
# to give it as a input to ResNet50 with pretrained weights
res_input = encoder_decoder(inputs)
res_input_shape = K.int_shape(res_input)
res_input_shape = (res_input_shape[1],res_input_shape[2],res_input_shape[3])
# Passing the 3 channel map into ResNet50 followed by 2 upsampling layers
# to get a output of shape exactly 1/8th of the input map shape
res = resnet(res_input, input_shape = res_input_shape)
# Pyramid Pooling Module
ppmodule_out = pyramid_pooling_module(res)
# Final Conv layers and output
x = Conv2D(512, 3, activation = 'relu', padding='same')(ppmodule_out)
x = BatchNormalization()(x)
x = Dropout(0.5)(x)
x = Conv2D(n_classes, 1)(x)
#x = interpolation(x, shape = (input_shape[0], input_shape[1]))
x = Lambda(interpolation, arguments={'shape': (input_shape[0], input_shape[1])})(x)
out = Activation('softmax')(x)
model = Model(inputs = inputs, outputs = out)
adam = Adam(lr = 0.00001)
model.compile(optimizer = adam, loss = 'categorical_crossentropy', metrics = ['accuracy'])
model.summary()
return model
model = PSPNet()