forked from theroyallab/tabbyAPI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
668 lines (541 loc) · 21.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
"""The main tabbyAPI module. Contains the FastAPI server and endpoints."""
import pathlib
import uvicorn
from asyncio import CancelledError
from typing import Optional
from uuid import uuid4
from jinja2 import TemplateError
from fastapi import FastAPI, Depends, HTTPException, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse
from functools import partial
from progress.bar import IncrementalBar
import common.gen_logging as gen_logging
from backends.exllamav2.model import ExllamaV2Container
from backends.exllamav2.utils import check_exllama_version
from common.args import convert_args_to_dict, init_argparser
from common.auth import check_admin_key, check_api_key, load_auth_keys
from common.config import (
get_developer_config,
get_sampling_config,
override_config_from_args,
read_config_from_file,
get_gen_logging_config,
get_model_config,
get_draft_model_config,
get_lora_config,
get_network_config,
)
from common.generators import call_with_semaphore, generate_with_semaphore
from common.sampling import (
get_sampler_overrides,
set_overrides_from_file,
set_overrides_from_dict,
)
from common.templating import (
get_all_templates,
get_prompt_from_template,
get_template_from_file,
)
from common.utils import get_generator_error, get_sse_packet, load_progress, unwrap
from common.logger import init_logger
from OAI.types.completion import CompletionRequest
from OAI.types.chat_completion import ChatCompletionRequest
from OAI.types.lora import LoraCard, LoraList, LoraLoadRequest, LoraLoadResponse
from OAI.types.model import (
ModelCard,
ModelLoadRequest,
ModelLoadResponse,
ModelCardParameters,
)
from OAI.types.sampler_overrides import SamplerOverrideSwitchRequest
from OAI.types.template import TemplateList, TemplateSwitchRequest
from OAI.types.token import (
TokenEncodeRequest,
TokenEncodeResponse,
TokenDecodeRequest,
TokenDecodeResponse,
)
from OAI.utils.completion import (
create_completion_response,
create_chat_completion_response,
create_chat_completion_stream_chunk,
)
from OAI.utils.model import get_model_list
from OAI.utils.lora import get_lora_list
logger = init_logger(__name__)
app = FastAPI(
title="TabbyAPI",
summary="An OAI compatible exllamav2 API that's both lightweight and fast",
description=(
"This docs page is not meant to send requests! Please use a service "
"like Postman or a frontend UI."
),
)
# Globally scoped variables. Undefined until initalized in main
MODEL_CONTAINER: Optional[ExllamaV2Container] = None
def _check_model_container():
if MODEL_CONTAINER is None or MODEL_CONTAINER.model is None:
raise HTTPException(400, "No models are loaded.")
# ALlow CORS requests
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Model list endpoint
@app.get("/v1/models", dependencies=[Depends(check_api_key)])
@app.get("/v1/model/list", dependencies=[Depends(check_api_key)])
async def list_models():
"""Lists all models in the model directory."""
model_config = get_model_config()
model_dir = unwrap(model_config.get("model_dir"), "models")
model_path = pathlib.Path(model_dir)
draft_model_dir = get_draft_model_config().get("draft_model_dir")
models = get_model_list(model_path.resolve(), draft_model_dir)
if unwrap(model_config.get("use_dummy_models"), False):
models.data.insert(0, ModelCard(id="gpt-3.5-turbo"))
return models
# Currently loaded model endpoint
@app.get(
"/v1/model",
dependencies=[Depends(check_api_key), Depends(_check_model_container)],
)
@app.get(
"/v1/internal/model/info",
dependencies=[Depends(check_api_key), Depends(_check_model_container)],
)
async def get_current_model():
"""Returns the currently loaded model."""
model_name = MODEL_CONTAINER.get_model_path().name
prompt_template = MODEL_CONTAINER.prompt_template
model_card = ModelCard(
id=model_name,
parameters=ModelCardParameters(
rope_scale=MODEL_CONTAINER.config.scale_pos_emb,
rope_alpha=MODEL_CONTAINER.config.scale_alpha_value,
max_seq_len=MODEL_CONTAINER.config.max_seq_len,
cache_mode="FP8" if MODEL_CONTAINER.cache_fp8 else "FP16",
prompt_template=prompt_template.name if prompt_template else None,
num_experts_per_token=MODEL_CONTAINER.config.num_experts_per_token,
use_cfg=MODEL_CONTAINER.use_cfg,
),
logging=gen_logging.PREFERENCES,
)
if MODEL_CONTAINER.draft_config:
draft_card = ModelCard(
id=MODEL_CONTAINER.get_model_path(True).name,
parameters=ModelCardParameters(
rope_scale=MODEL_CONTAINER.draft_config.scale_pos_emb,
rope_alpha=MODEL_CONTAINER.draft_config.scale_alpha_value,
max_seq_len=MODEL_CONTAINER.draft_config.max_seq_len,
),
)
model_card.parameters.draft = draft_card
return model_card
@app.get("/v1/model/draft/list", dependencies=[Depends(check_api_key)])
async def list_draft_models():
"""Lists all draft models in the model directory."""
draft_model_dir = unwrap(get_draft_model_config().get("draft_model_dir"), "models")
draft_model_path = pathlib.Path(draft_model_dir)
models = get_model_list(draft_model_path.resolve())
return models
# Load model endpoint
@app.post("/v1/model/load", dependencies=[Depends(check_admin_key)])
async def load_model(request: Request, data: ModelLoadRequest):
"""Loads a model into the model container."""
global MODEL_CONTAINER
if MODEL_CONTAINER and MODEL_CONTAINER.model:
raise HTTPException(400, "A model is already loaded! Please unload it first.")
if not data.name:
raise HTTPException(400, "model_name not found.")
model_path = pathlib.Path(unwrap(get_model_config().get("model_dir"), "models"))
model_path = model_path / data.name
load_data = data.model_dump()
if data.draft:
if not data.draft.draft_model_name:
raise HTTPException(
400, "draft_model_name was not found inside the draft object."
)
load_data["draft"]["draft_model_dir"] = unwrap(
get_draft_model_config().get("draft_model_dir"), "models"
)
if not model_path.exists():
raise HTTPException(400, "model_path does not exist. Check model_name?")
MODEL_CONTAINER = ExllamaV2Container(model_path.resolve(), False, **load_data)
async def generator():
"""Generator for the loading process."""
model_type = "draft" if MODEL_CONTAINER.draft_config else "model"
load_status = MODEL_CONTAINER.load_gen(load_progress)
try:
for module, modules in load_status:
if await request.is_disconnected():
break
if module == 0:
loading_bar: IncrementalBar = IncrementalBar("Modules", max=modules)
elif module == modules:
loading_bar.next()
loading_bar.finish()
response = ModelLoadResponse(
model_type=model_type,
module=module,
modules=modules,
status="finished",
)
yield get_sse_packet(response.model_dump_json())
# Switch to model progress if the draft model is loaded
if MODEL_CONTAINER.draft_config:
model_type = "model"
else:
loading_bar.next()
response = ModelLoadResponse(
model_type=model_type,
module=module,
modules=modules,
status="processing",
)
yield get_sse_packet(response.model_dump_json())
except CancelledError:
logger.error(
"Model load cancelled by user. "
"Please make sure to run unload to free up resources."
)
except Exception as exc:
yield get_generator_error(str(exc))
return StreamingResponse(generator(), media_type="text/event-stream")
# Unload model endpoint
@app.post(
"/v1/model/unload",
dependencies=[Depends(check_admin_key), Depends(_check_model_container)],
)
async def unload_model():
"""Unloads the currently loaded model."""
global MODEL_CONTAINER
MODEL_CONTAINER.unload()
MODEL_CONTAINER = None
@app.get("/v1/templates", dependencies=[Depends(check_api_key)])
@app.get("/v1/template/list", dependencies=[Depends(check_api_key)])
async def get_templates():
templates = get_all_templates()
template_strings = list(map(lambda template: template.stem, templates))
return TemplateList(data=template_strings)
@app.post(
"/v1/template/switch",
dependencies=[Depends(check_admin_key), Depends(_check_model_container)],
)
async def switch_template(data: TemplateSwitchRequest):
"""Switch the currently loaded template"""
if not data.name:
raise HTTPException(400, "New template name not found.")
try:
template = get_template_from_file(data.name)
MODEL_CONTAINER.prompt_template = template
except FileNotFoundError as e:
raise HTTPException(400, "Template does not exist. Check the name?") from e
@app.post(
"/v1/template/unload",
dependencies=[Depends(check_admin_key), Depends(_check_model_container)],
)
async def unload_template():
"""Unloads the currently selected template"""
MODEL_CONTAINER.prompt_template = None
# Sampler override endpoints
@app.get("/v1/sampling/overrides", dependencies=[Depends(check_api_key)])
@app.get("/v1/sampling/override/list", dependencies=[Depends(check_api_key)])
async def list_sampler_overrides():
"""API wrapper to list all currently applied sampler overrides"""
return get_sampler_overrides()
@app.post(
"/v1/sampling/override/switch",
dependencies=[Depends(check_admin_key)],
)
async def switch_sampler_override(data: SamplerOverrideSwitchRequest):
"""Switch the currently loaded override preset"""
if data.preset:
try:
set_overrides_from_file(data.preset)
except FileNotFoundError as e:
raise HTTPException(
400, "Sampler override preset does not exist. Check the name?"
) from e
elif data.overrides:
set_overrides_from_dict(data.overrides)
else:
raise HTTPException(
400, "A sampler override preset or dictionary wasn't provided."
)
@app.post(
"/v1/sampling/override/unload",
dependencies=[Depends(check_admin_key)],
)
async def unload_sampler_override():
"""Unloads the currently selected override preset"""
set_overrides_from_dict({})
# Lora list endpoint
@app.get("/v1/loras", dependencies=[Depends(check_api_key)])
@app.get("/v1/lora/list", dependencies=[Depends(check_api_key)])
async def get_all_loras():
"""Lists all LoRAs in the lora directory."""
lora_path = pathlib.Path(unwrap(get_lora_config().get("lora_dir"), "loras"))
loras = get_lora_list(lora_path.resolve())
return loras
# Currently loaded loras endpoint
@app.get(
"/v1/lora",
dependencies=[Depends(check_api_key), Depends(_check_model_container)],
)
async def get_active_loras():
"""Returns the currently loaded loras."""
active_loras = LoraList(
data=list(
map(
lambda lora: LoraCard(
id=pathlib.Path(lora.lora_path).parent.name,
scaling=lora.lora_scaling * lora.lora_r / lora.lora_alpha,
),
MODEL_CONTAINER.active_loras,
)
)
)
return active_loras
# Load lora endpoint
@app.post(
"/v1/lora/load",
dependencies=[Depends(check_admin_key), Depends(_check_model_container)],
)
async def load_lora(data: LoraLoadRequest):
"""Loads a LoRA into the model container."""
if not data.loras:
raise HTTPException(400, "List of loras to load is not found.")
lora_dir = pathlib.Path(unwrap(get_lora_config().get("lora_dir"), "loras"))
if not lora_dir.exists():
raise HTTPException(
400,
"A parent lora directory does not exist. Check your config.yml?",
)
# Clean-up existing loras if present
if len(MODEL_CONTAINER.active_loras) > 0:
MODEL_CONTAINER.unload(True)
result = MODEL_CONTAINER.load_loras(lora_dir, **data.model_dump())
return LoraLoadResponse(
success=unwrap(result.get("success"), []),
failure=unwrap(result.get("failure"), []),
)
# Unload lora endpoint
@app.post(
"/v1/lora/unload",
dependencies=[Depends(check_admin_key), Depends(_check_model_container)],
)
async def unload_loras():
"""Unloads the currently loaded loras."""
MODEL_CONTAINER.unload(True)
# Encode tokens endpoint
@app.post(
"/v1/token/encode",
dependencies=[Depends(check_api_key), Depends(_check_model_container)],
)
async def encode_tokens(data: TokenEncodeRequest):
"""Encodes a string into tokens."""
raw_tokens = MODEL_CONTAINER.encode_tokens(data.text, **data.get_params())
tokens = unwrap(raw_tokens, [])
response = TokenEncodeResponse(tokens=tokens, length=len(tokens))
return response
# Decode tokens endpoint
@app.post(
"/v1/token/decode",
dependencies=[Depends(check_api_key), Depends(_check_model_container)],
)
async def decode_tokens(data: TokenDecodeRequest):
"""Decodes tokens into a string."""
message = MODEL_CONTAINER.decode_tokens(data.tokens, **data.get_params())
response = TokenDecodeResponse(text=unwrap(message, ""))
return response
# Completions endpoint
@app.post(
"/v1/completions",
dependencies=[Depends(check_api_key), Depends(_check_model_container)],
)
async def generate_completion(request: Request, data: CompletionRequest):
"""Generates a completion from a prompt."""
model_path = MODEL_CONTAINER.get_model_path()
if isinstance(data.prompt, list):
data.prompt = "\n".join(data.prompt)
disable_request_streaming = unwrap(
get_developer_config().get("disable_request_streaming"), False
)
if data.stream and not disable_request_streaming:
async def generator():
"""Generator for the generation process."""
try:
new_generation = MODEL_CONTAINER.generate_gen(
data.prompt, **data.to_gen_params()
)
for generation in new_generation:
if await request.is_disconnected():
break
response = create_completion_response(generation, model_path.name)
yield get_sse_packet(response.model_dump_json())
# Yield a finish response on successful generation
yield get_sse_packet("[DONE]")
except CancelledError:
logger.error("Completion request cancelled by user.")
except Exception as exc:
yield get_generator_error(str(exc))
return StreamingResponse(
generate_with_semaphore(generator), media_type="text/event-stream"
)
generation = await call_with_semaphore(
partial(MODEL_CONTAINER.generate, data.prompt, **data.to_gen_params())
)
response = create_completion_response(generation, model_path.name)
return response
# Chat completions endpoint
@app.post(
"/v1/chat/completions",
dependencies=[Depends(check_api_key), Depends(_check_model_container)],
)
async def generate_chat_completion(request: Request, data: ChatCompletionRequest):
"""Generates a chat completion from a prompt."""
if MODEL_CONTAINER.prompt_template is None:
raise HTTPException(
422,
"This endpoint is disabled because a prompt template is not set.",
)
model_path = MODEL_CONTAINER.get_model_path()
if isinstance(data.messages, str):
prompt = data.messages
else:
try:
special_tokens_dict = MODEL_CONTAINER.get_special_tokens(
unwrap(data.add_bos_token, True),
unwrap(data.ban_eos_token, False),
)
prompt = get_prompt_from_template(
data.messages,
MODEL_CONTAINER.prompt_template,
data.add_generation_prompt,
special_tokens_dict,
)
except KeyError as exc:
raise HTTPException(
400,
"Could not find a Conversation from prompt template "
f"'{MODEL_CONTAINER.prompt_template.name}'. "
"Check your spelling?",
) from exc
except TemplateError as exc:
raise HTTPException(
400,
f"TemplateError: {str(exc)}",
) from exc
disable_request_streaming = unwrap(
get_developer_config().get("disable_request_streaming"), False
)
if data.stream and not disable_request_streaming:
const_id = f"chatcmpl-{uuid4().hex}"
async def generator():
"""Generator for the generation process."""
try:
new_generation = MODEL_CONTAINER.generate_gen(
prompt, **data.to_gen_params()
)
for generation in new_generation:
if await request.is_disconnected():
break
response = create_chat_completion_stream_chunk(
const_id, generation, model_path.name
)
yield get_sse_packet(response.model_dump_json())
# Yield a finish response on successful generation
finish_response = create_chat_completion_stream_chunk(
const_id, finish_reason="stop"
)
yield get_sse_packet(finish_response.model_dump_json())
except CancelledError:
logger.error("Chat completion cancelled by user.")
except Exception as exc:
yield get_generator_error(str(exc))
return StreamingResponse(
generate_with_semaphore(generator), media_type="text/event-stream"
)
generation = await call_with_semaphore(
partial(MODEL_CONTAINER.generate, prompt, **data.to_gen_params())
)
response = create_chat_completion_response(generation, model_path.name)
return response
def entrypoint(args: Optional[dict] = None):
"""Entry function for program startup"""
global MODEL_CONTAINER
# Load from YAML config
read_config_from_file(pathlib.Path("config.yml"))
# Parse and override config from args
if args is None:
parser = init_argparser()
args = convert_args_to_dict(parser.parse_args(), parser)
override_config_from_args(args)
developer_config = get_developer_config()
# Check exllamav2 version and give a descriptive error if it's too old
# Skip if launching unsafely
if unwrap(developer_config.get("unsafe_launch"), False):
logger.warning(
"UNSAFE: Skipping ExllamaV2 version check.\n"
"If you aren't a developer, please keep this off!"
)
else:
check_exllama_version()
network_config = get_network_config()
# Initialize auth keys
load_auth_keys(unwrap(network_config.get("disable_auth"), False))
# Override the generation log options if given
log_config = get_gen_logging_config()
if log_config:
gen_logging.update_from_dict(log_config)
gen_logging.broadcast_status()
# Set sampler parameter overrides if provided
sampling_config = get_sampling_config()
sampling_override_preset = sampling_config.get("override_preset")
if sampling_override_preset:
try:
set_overrides_from_file(sampling_override_preset)
except FileNotFoundError as e:
logger.warning(str(e))
# If an initial model name is specified, create a container
# and load the model
model_config = get_model_config()
model_name = model_config.get("model_name")
if model_name:
model_path = pathlib.Path(unwrap(model_config.get("model_dir"), "models"))
model_path = model_path / model_name
MODEL_CONTAINER = ExllamaV2Container(
model_path.resolve(), False, **model_config
)
load_status = MODEL_CONTAINER.load_gen(load_progress)
for module, modules in load_status:
if module == 0:
loading_bar: IncrementalBar = IncrementalBar("Modules", max=modules)
elif module == modules:
loading_bar.next()
loading_bar.finish()
else:
loading_bar.next()
# Load loras after loading the model
lora_config = get_lora_config()
if lora_config.get("loras"):
lora_dir = pathlib.Path(unwrap(lora_config.get("lora_dir"), "loras"))
MODEL_CONTAINER.load_loras(lora_dir.resolve(), **lora_config)
host = unwrap(network_config.get("host"), "127.0.0.1")
port = unwrap(network_config.get("port"), 5000)
# TODO: Move OAI API to a separate folder
logger.info(f"Developer documentation: http://{host}:{port}/docs")
logger.info(f"Completions: http://{host}:{port}/v1/completions")
logger.info(f"Chat completions: http://{host}:{port}/v1/chat/completions")
uvicorn.run(
app,
host=host,
port=port,
log_level="debug",
)
if __name__ == "__main__":
entrypoint()