forked from bo-zhang-cs/CACNet-Pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_image_cropping.py
256 lines (234 loc) · 11.5 KB
/
train_image_cropping.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import os
import sys
import numpy as np
from tensorboardX import SummaryWriter
import torch
import time
import datetime
import csv
import shutil
import random
import torch.utils.data as data
import cv2
from KUPCP_dataset import CompositionDataset, composition_cls
from Cropping_dataset import FCDBDataset
from config_cropping import cfg
from test import evaluate_on_FCDB_and_FLMS, evaluate_composition_classification
from CACNet import CACNet
import warnings
warnings.filterwarnings("ignore")
device = torch.device('cuda:{}'.format(cfg.gpu_id))
SEED = 0
torch.manual_seed(SEED)
np.random.seed(SEED)
random.seed(SEED)
def create_dataloader():
crop_dataset = FCDBDataset(split='train', keep_aspect_ratio=cfg.keep_aspect_ratio)
crop_loader = torch.utils.data.DataLoader(crop_dataset, batch_size=cfg.crop_batch_size,
shuffle=True, num_workers=cfg.num_workers,
drop_last=False, worker_init_fn=random.seed(SEED))
print('FCDB training set has {} samples, batch_size={}, total {} batches'.format(
len(crop_dataset), cfg.crop_batch_size, len(crop_loader)))
com_dataset = CompositionDataset(split='train', keep_aspect_ratio=cfg.keep_aspect_ratio)
com_loader = torch.utils.data.DataLoader(com_dataset, batch_size=cfg.com_batch_size,
shuffle=True, num_workers=cfg.num_workers,
drop_last=False, worker_init_fn=random.seed(SEED))
print('Composition training set has {} samples, batch_size={}, total {} batches'.format(
len(com_dataset), cfg.com_batch_size, len(com_loader)))
return crop_loader, com_loader
class Trainer:
def __init__(self, model):
self.model = model
self.epoch = 0
self.iters = 0
self.max_epoch = cfg.max_epoch
self.writer = SummaryWriter(log_dir=cfg.log_dir)
self.optimizer, self.lr_scheduler = self.get_optimizer()
self.crop_loader, self.com_loader = create_dataloader()
self.com_dataiter = iter(self.com_loader)
self.eval_results = []
self.best_results = {'FCDB_iou': 0., 'FCDB_disp': 1.,
'FLMS_iou': 0., 'FLMS_disp': 1.}
self.crop_criterion = torch.nn.SmoothL1Loss(reduction='mean')
self.com_criterion = torch.nn.CrossEntropyLoss(reduction='mean')
self.visual_path = os.path.join(cfg.exp_path, 'visualized_results')
def get_optimizer(self):
# params = [
# {'params': self.model.cropping_module.parameters(), 'lr': cfg.lr},
# {'params': self.model.composition_module.parameters(), 'lr': 1e-4},
# {'params': self.model.backbone.parameters(), 'lr': 1e-4}
# ]
optim = torch.optim.Adam(
self.model.parameters(),
lr=cfg.lr,
weight_decay=cfg.weight_decay
)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optim, milestones=cfg.lr_decay_epoch, gamma=cfg.lr_decay
)
return optim, lr_scheduler
def run(self):
print(("======== Begin Training ========="))
for epoch in range(1,self.max_epoch+1):
self.epoch = epoch
self.train()
if epoch % cfg.eval_freq == 0:
self.eval()
self.record_eval_results()
self.lr_scheduler.step()
def fetch_com_batch(self):
try:
batch_data = next(self.com_dataiter)
except:
self.com_dataiter = iter(self.com_loader)
batch_data = next(self.com_dataiter)
return batch_data
def visualize_com_prediction(self, image_path, logits, kcm, category):
os.makedirs(self.visual_path, exist_ok=True)
_, predicted = torch.max(logits.data, 1)
# print('Composition prediction', predicted)
# print('Ground-truth composition', category)
label = composition_cls[predicted[0].item()]
gt_label = composition_cls[category[0].item()]
im = cv2.imread(image_path[0])
height, width, _ = im.shape
dst = im.copy()
gt_ss = 'gt:{}'.format(gt_label)
dst = cv2.putText(dst, gt_ss, (20, 40), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 2)
pr_ss = 'pre:{}'.format(label)
dst = cv2.putText(dst, pr_ss, (20, 80), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 2)
# h,w,1
kcm = kcm.permute(0, 2, 3, 1)[0].detach().cpu().numpy()
norm_kcm = cv2.normalize(kcm, None, 0, 255, cv2.NORM_MINMAX)
norm_kcm = np.asarray(norm_kcm, dtype=np.uint8)
heat_im = cv2.applyColorMap(norm_kcm, cv2.COLORMAP_JET)
heat_im = cv2.resize(heat_im, (width, height))
fuse_im = cv2.addWeighted(im, 0.2, heat_im, 0.8, 0)
fuse_im = np.concatenate([dst, fuse_im], axis=1)
cv2.imwrite(os.path.join(self.visual_path, 'com-{}.jpg'.format(self.iters)), fuse_im)
def train(self):
self.model.train()
start = time.time()
batch_crop_loss = 0
batch_com_loss = 0
total_batch = len(self.crop_loader)
batch_com_cnt = 0
batch_com_correct = 0
for batch_idx, batch_data in enumerate(self.crop_loader):
# ================ training on cropping task ===============
self.iters += 1
im = batch_data[0].to(device)
crop = batch_data[1].to(device).squeeze(1)
width = batch_data[2].to(device)
height = batch_data[3].to(device)
image_path = batch_data[4]
crop[:,0::2] = crop[:, 0::2] / width[:,None] * im.shape[-1]
crop[:,1::2] = crop[:, 1::2] / height[:,None] * im.shape[-2]
self.model.composition_module.eval() # freeze the BN params of classification branch
logits, kcm, pre_crop = self.model(im, only_classify=False)
crop_loss = self.crop_criterion(pre_crop, crop)
# print('gt {} v.s. pre {}'.format(crop.shape, pre_crop.shape))
# print(crop, pre_crop)
batch_crop_loss += crop_loss.item()
crop_loss *= cfg.crop_loss_factor
self.optimizer.zero_grad()
crop_loss.backward()
# ================== training on composition classification task ==============
batch_data = self.fetch_com_batch()
im = batch_data[0].to(device)
labels = batch_data[1].to(device).squeeze(1)
image_path = batch_data[2]
self.model.composition_module.train() # allow update BN classifier's params
logits,kcm = self.model(im, only_classify=True)
com_loss = self.com_criterion(logits, labels)
batch_com_loss += com_loss.item()
com_loss *= cfg.com_loss_factor
com_loss.backward()
self.optimizer.step()
batch_com_cnt += labels.shape[0]
_, predicted = torch.max(logits.data, 1)
batch_com_correct += (predicted == labels).sum().item()
# if self.iters % cfg.save_image_freq == 0:
# self.visualize_com_prediction(image_path, logits, kcm, labels)
if batch_idx > 0 and batch_idx % cfg.display_freq == 0:
avg_crop_loss = batch_crop_loss / (1 + batch_idx)
avg_com_loss = batch_com_loss / (1 + batch_idx)
avg_com_acc = float(batch_com_correct) / batch_com_cnt
batch_com_cnt = 0
batch_com_correct = 0
cur_lr = self.optimizer.param_groups[0]['lr']
self.writer.add_scalar('train/crop_loss', avg_crop_loss, self.iters)
self.writer.add_scalar('train/com_loss', avg_com_loss, self.iters)
self.writer.add_scalar('train/lr', cur_lr, self.iters)
time_per_batch = (time.time() - start) / (batch_idx + 1.)
last_batches = (self.max_epoch - self.epoch - 1) * total_batch + (total_batch - batch_idx - 1)
last_time = int(last_batches * time_per_batch)
time_str = str(datetime.timedelta(seconds=last_time))
print('=== epoch:{}/{}, step:{}/{} | Crop_Loss:{:.4f} | Com_Loss:{:.4f} | Com_acc:{:.2%} | lr:{:.6f} | estimated last time:{} ==='.format(
self.epoch, self.max_epoch, batch_idx, total_batch, avg_crop_loss, avg_com_loss, avg_com_acc, cur_lr, time_str
))
def eval(self):
FCDB_iou, FCDB_disp = evaluate_on_FCDB_and_FLMS(self.model, dataset='FCDB')
FLMS_iou, FLMS_disp = evaluate_on_FCDB_and_FLMS(self.model, dataset='FLMS')
com_acc = evaluate_composition_classification(self.model)
self.writer.add_scalar('test/accuracy', com_acc, self.epoch)
self.eval_results.append([self.epoch, FCDB_iou, FCDB_disp, FLMS_iou, FLMS_disp])
epoch_result = {'FCDB_iou': FCDB_iou, 'FCDB_disp': FCDB_disp,
'FLMS_iou': FLMS_iou, 'FLMS_disp': FLMS_disp}
for m in self.best_results.keys():
update = False
if ('disp' not in m) and (epoch_result[m] > self.best_results[m]):
update = True
elif ('disp' in m) and (epoch_result[m] < self.best_results[m]):
update = True
if update:
self.best_results[m] = epoch_result[m]
checkpoint_path = os.path.join(cfg.checkpoint_dir, 'best-{}.pth'.format(m))
torch.save(self.model.state_dict(), checkpoint_path)
print('Update best {} model, best {}={:.4f}'.format(m, m, self.best_results[m]))
if m in ['FCDB_iou', 'FLMS_iou']:
self.writer.add_scalar('test/{}'.format(m), epoch_result[m], self.epoch)
self.writer.add_scalar('test/best-{}'.format(m), self.best_results[m], self.epoch)
if self.epoch > 0 and self.epoch % cfg.save_freq == 0:
checkpoint_path = os.path.join(cfg.checkpoint_dir, 'epoch-{}.pth'.format(self.epoch))
torch.save(self.model.state_dict(), checkpoint_path)
def record_eval_results(self):
csv_path = os.path.join(cfg.exp_path, '..', '{}.csv'.format(cfg.exp_name))
header = ['epoch', 'FCDB_iou', 'FCDB_disp', 'FLMS_iou', 'FLMS_disp']
rows = [header]
for i in range(len(self.eval_results)):
new_results = []
for j in range(len(self.eval_results[i])):
if header[j] == 'epoch':
new_results.append(self.eval_results[i][j])
else:
new_results.append(round(self.eval_results[i][j], 4))
self.eval_results[i] = new_results
rows += self.eval_results
metrics = [[] for i in header]
for result in self.eval_results:
for i, r in enumerate(result):
metrics[i].append(r)
for name, m in zip(header, metrics):
if name == 'epoch':
continue
index = m.index(max(m))
if 'disp' in name:
index = m.index(min(m))
title = 'best {}(epoch-{})'.format(name, index)
row = [l[index] for l in metrics]
row[0] = title
rows.append(row)
with open(csv_path, 'w') as f:
cw = csv.writer(f)
cw.writerows(rows)
print('Save result to ', csv_path)
if __name__ == '__main__':
cfg.create_path()
for file in os.listdir('./'):
if file.endswith('.py'):
shutil.copy(file, cfg.exp_path)
print('backup', file)
net = CACNet(loadweights=True).to(device)
trainer = Trainer(net)
trainer.run()