You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
pymatgen unknown version or path
monty 2024.7.30 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/monty
ase 3.23.0 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/ase
paramiko 3.4.1 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/paramiko
custodian 2024.8.9 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/custodian
Reference
Please cite:
Yuzhi Zhang, Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang, and Weinan E,
DP-GEN: A concurrent learning platform for the generation of reliable deep learning
based potential energy models, Computer Physics Communications, 2020, 107206.
dpgen is a convenient script that uses DeepGenerator to prepare initial data, drive DeepMDkit and analyze results. This script works based on
several sub-commands with their own options. To see the options for the sub-commands, type "dpgen sub-command -h".
positional arguments:
{init_surf,init_bulk,auto_gen_param,init_reaction,run,run/report,collect,simplify,autotest,db,gui}
init_surf Generating initial data for surface systems.
init_bulk Generating initial data for bulk systems.
auto_gen_param auto gen param.json
init_reaction Generating initial data for reactive systems.
run Main process of Deep Potential Generator.
run/report Report the systems and the thermodynamic conditions of the labeled frames.
collect Collect data.
simplify Simplify data.
autotest Auto-test for Deep Potential.
db Collecting data from DP-GEN.
gui Serve DP-GUI.
optional arguments:
-h, --help show this help message and exit
pip show pymatgen
Name: pymatgen
Version: 2024.8.9
Summary: Python Materials Genomics is a robust materials analysis code that defines core object representations for structures
Home-page: https://pymatgen.org
Author:
Author-email: Pymatgen Development Team [email protected]
License: MIT
Location: /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages
Requires: joblib, matplotlib, monty, networkx, numpy, palettable, pandas, plotly, pybtex, requests, ruamel.yaml, scipy, spglib, sympy, tabulate, tqdm, uncertainties
Required-by: dpgen, mp-pyrho, pymatgen-analysis-defects
DP-GEN Version
Version: 0.12.1
Platform, Python Version, Remote Platform, etc
python=3.9 or 3.10
pymatgen=2042.8.9 or 2023.8.10 or 2023.5.31 or 2022.11.1
Input Files, Running Commands, Error Log, etc.
conda create -n dpgen
conda install dpgen or pip install dpgen or other methods
pymatgen unknown version or path
monty 2024.7.30 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/monty
ase 3.23.0 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/ase
paramiko 3.4.1 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/paramiko
custodian 2024.8.9 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/custodian
Reference
Please cite:
Yuzhi Zhang, Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang, and Weinan E,
DP-GEN: A concurrent learning platform for the generation of reliable deep learning
based potential energy models, Computer Physics Communications, 2020, 107206.
dpgen is a convenient script that uses DeepGenerator to prepare initial data, drive DeepMDkit and analyze results. This script works based on
several sub-commands with their own options. To see the options for the sub-commands, type "dpgen sub-command -h".
positional arguments:
{init_surf,init_bulk,auto_gen_param,init_reaction,run,run/report,collect,simplify,autotest,db,gui}
init_surf Generating initial data for surface systems.
init_bulk Generating initial data for bulk systems.
auto_gen_param auto gen param.json
init_reaction Generating initial data for reactive systems.
run Main process of Deep Potential Generator.
run/report Report the systems and the thermodynamic conditions of the labeled frames.
collect Collect data.
simplify Simplify data.
autotest Auto-test for Deep Potential.
db Collecting data from DP-GEN.
gui Serve DP-GUI.
optional arguments:
-h, --help show this help message and exit
pip show pymatgen
Name: pymatgen
Version: 2024.8.9
Summary: Python Materials Genomics is a robust materials analysis code that defines core object representations for structures
Home-page: https://pymatgen.org
Author:
Author-email: Pymatgen Development Team [email protected]
License: MIT
Location: /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages
Requires: joblib, matplotlib, monty, networkx, numpy, palettable, pandas, plotly, pybtex, requests, ruamel.yaml, scipy, spglib, sympy, tabulate, tqdm, uncertainties
Required-by: dpgen, mp-pyrho, pymatgen-analysis-defects
Steps to Reproduce
conda create -n dpgen
conda install dpgen or pip install dpgen or other methods
pymatgen unknown version or path
monty 2024.7.30 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/monty
ase 3.23.0 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/ase
paramiko 3.4.1 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/paramiko
custodian 2024.8.9 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/custodian
Reference
Please cite:
Yuzhi Zhang, Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang, and Weinan E,
DP-GEN: A concurrent learning platform for the generation of reliable deep learning
based potential energy models, Computer Physics Communications, 2020, 107206.
dpgen is a convenient script that uses DeepGenerator to prepare initial data, drive DeepMDkit and analyze results. This script works based on
several sub-commands with their own options. To see the options for the sub-commands, type "dpgen sub-command -h".
positional arguments:
{init_surf,init_bulk,auto_gen_param,init_reaction,run,run/report,collect,simplify,autotest,db,gui}
init_surf Generating initial data for surface systems.
init_bulk Generating initial data for bulk systems.
auto_gen_param auto gen param.json
init_reaction Generating initial data for reactive systems.
run Main process of Deep Potential Generator.
run/report Report the systems and the thermodynamic conditions of the labeled frames.
collect Collect data.
simplify Simplify data.
autotest Auto-test for Deep Potential.
db Collecting data from DP-GEN.
gui Serve DP-GUI.
optional arguments:
-h, --help show this help message and exit
pip show pymatgen
Name: pymatgen
Version: 2024.8.9
Summary: Python Materials Genomics is a robust materials analysis code that defines core object representations for structures
Home-page: https://pymatgen.org
Author:
Author-email: Pymatgen Development Team [email protected]
License: MIT
Location: /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages
Requires: joblib, matplotlib, monty, networkx, numpy, palettable, pandas, plotly, pybtex, requests, ruamel.yaml, scipy, spglib, sympy, tabulate, tqdm, uncertainties
Required-by: dpgen, mp-pyrho, pymatgen-analysis-defects
Further Information, Files, and Links
No response
The text was updated successfully, but these errors were encountered:
Bug summary
conda create -n dpgen
conda install dpgen or pip install dpgen or other methods
dpgen -h
DeepModeling
Version: 0.12.1
Path: /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/dpgen
Dependency
pymatgen unknown version or path
monty 2024.7.30 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/monty
ase 3.23.0 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/ase
paramiko 3.4.1 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/paramiko
custodian 2024.8.9 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/custodian
Reference
Please cite:
Yuzhi Zhang, Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang, and Weinan E,
DP-GEN: A concurrent learning platform for the generation of reliable deep learning
based potential energy models, Computer Physics Communications, 2020, 107206.
Description
usage: dpgen [-h] {init_surf,init_bulk,auto_gen_param,init_reaction,run,run/report,collect,simplify,autotest,db,gui} ...
dpgen is a convenient script that uses DeepGenerator to prepare initial data, drive DeepMDkit and analyze results. This script works based on
several sub-commands with their own options. To see the options for the sub-commands, type "dpgen sub-command -h".
positional arguments:
{init_surf,init_bulk,auto_gen_param,init_reaction,run,run/report,collect,simplify,autotest,db,gui}
init_surf Generating initial data for surface systems.
init_bulk Generating initial data for bulk systems.
auto_gen_param auto gen param.json
init_reaction Generating initial data for reactive systems.
run Main process of Deep Potential Generator.
run/report Report the systems and the thermodynamic conditions of the labeled frames.
collect Collect data.
simplify Simplify data.
autotest Auto-test for Deep Potential.
db Collecting data from DP-GEN.
gui Serve DP-GUI.
optional arguments:
-h, --help show this help message and exit
pip show pymatgen
Name: pymatgen
Version: 2024.8.9
Summary: Python Materials Genomics is a robust materials analysis code that defines core object representations for structures
Home-page: https://pymatgen.org
Author:
Author-email: Pymatgen Development Team [email protected]
License: MIT
Location: /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages
Requires: joblib, matplotlib, monty, networkx, numpy, palettable, pandas, plotly, pybtex, requests, ruamel.yaml, scipy, spglib, sympy, tabulate, tqdm, uncertainties
Required-by: dpgen, mp-pyrho, pymatgen-analysis-defects
DP-GEN Version
Version: 0.12.1
Platform, Python Version, Remote Platform, etc
python=3.9 or 3.10
pymatgen=2042.8.9 or 2023.8.10 or 2023.5.31 or 2022.11.1
Input Files, Running Commands, Error Log, etc.
conda create -n dpgen
conda install dpgen or pip install dpgen or other methods
dpgen -h
DeepModeling
Version: 0.12.1
Path: /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/dpgen
Dependency
pymatgen unknown version or path
monty 2024.7.30 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/monty
ase 3.23.0 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/ase
paramiko 3.4.1 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/paramiko
custodian 2024.8.9 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/custodian
Reference
Please cite:
Yuzhi Zhang, Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang, and Weinan E,
DP-GEN: A concurrent learning platform for the generation of reliable deep learning
based potential energy models, Computer Physics Communications, 2020, 107206.
Description
usage: dpgen [-h] {init_surf,init_bulk,auto_gen_param,init_reaction,run,run/report,collect,simplify,autotest,db,gui} ...
dpgen is a convenient script that uses DeepGenerator to prepare initial data, drive DeepMDkit and analyze results. This script works based on
several sub-commands with their own options. To see the options for the sub-commands, type "dpgen sub-command -h".
positional arguments:
{init_surf,init_bulk,auto_gen_param,init_reaction,run,run/report,collect,simplify,autotest,db,gui}
init_surf Generating initial data for surface systems.
init_bulk Generating initial data for bulk systems.
auto_gen_param auto gen param.json
init_reaction Generating initial data for reactive systems.
run Main process of Deep Potential Generator.
run/report Report the systems and the thermodynamic conditions of the labeled frames.
collect Collect data.
simplify Simplify data.
autotest Auto-test for Deep Potential.
db Collecting data from DP-GEN.
gui Serve DP-GUI.
optional arguments:
-h, --help show this help message and exit
pip show pymatgen
Name: pymatgen
Version: 2024.8.9
Summary: Python Materials Genomics is a robust materials analysis code that defines core object representations for structures
Home-page: https://pymatgen.org
Author:
Author-email: Pymatgen Development Team [email protected]
License: MIT
Location: /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages
Requires: joblib, matplotlib, monty, networkx, numpy, palettable, pandas, plotly, pybtex, requests, ruamel.yaml, scipy, spglib, sympy, tabulate, tqdm, uncertainties
Required-by: dpgen, mp-pyrho, pymatgen-analysis-defects
Steps to Reproduce
conda create -n dpgen
conda install dpgen or pip install dpgen or other methods
dpgen -h
DeepModeling
Version: 0.12.1
Path: /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/dpgen
Dependency
pymatgen unknown version or path
monty 2024.7.30 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/monty
ase 3.23.0 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/ase
paramiko 3.4.1 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/paramiko
custodian 2024.8.9 /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages/custodian
Reference
Please cite:
Yuzhi Zhang, Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang, and Weinan E,
DP-GEN: A concurrent learning platform for the generation of reliable deep learning
based potential energy models, Computer Physics Communications, 2020, 107206.
Description
usage: dpgen [-h] {init_surf,init_bulk,auto_gen_param,init_reaction,run,run/report,collect,simplify,autotest,db,gui} ...
dpgen is a convenient script that uses DeepGenerator to prepare initial data, drive DeepMDkit and analyze results. This script works based on
several sub-commands with their own options. To see the options for the sub-commands, type "dpgen sub-command -h".
positional arguments:
{init_surf,init_bulk,auto_gen_param,init_reaction,run,run/report,collect,simplify,autotest,db,gui}
init_surf Generating initial data for surface systems.
init_bulk Generating initial data for bulk systems.
auto_gen_param auto gen param.json
init_reaction Generating initial data for reactive systems.
run Main process of Deep Potential Generator.
run/report Report the systems and the thermodynamic conditions of the labeled frames.
collect Collect data.
simplify Simplify data.
autotest Auto-test for Deep Potential.
db Collecting data from DP-GEN.
gui Serve DP-GUI.
optional arguments:
-h, --help show this help message and exit
pip show pymatgen
Name: pymatgen
Version: 2024.8.9
Summary: Python Materials Genomics is a robust materials analysis code that defines core object representations for structures
Home-page: https://pymatgen.org
Author:
Author-email: Pymatgen Development Team [email protected]
License: MIT
Location: /share/home/202110186979/soft/miniconda/envs/dpgen/lib/python3.9/site-packages
Requires: joblib, matplotlib, monty, networkx, numpy, palettable, pandas, plotly, pybtex, requests, ruamel.yaml, scipy, spglib, sympy, tabulate, tqdm, uncertainties
Required-by: dpgen, mp-pyrho, pymatgen-analysis-defects
Further Information, Files, and Links
No response
The text was updated successfully, but these errors were encountered: