-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtemplate.cpp
1166 lines (1144 loc) · 35.9 KB
/
template.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include<string>
#include<vector>
#include<deque>
#include<ctime>
#include<cmath>
#include<iostream>
#include<cassert>
#include<algorithm>
#include<cstring>
#include<unordered_map>
#include<map>
#include<set>
using namespace std;
namespace pre{
using namespace std;
#define io ios::sync_with_stdio(false);cin.tie(0);
typedef long long ll;
typedef long double ld;
const int inf=(1<<30);
const long double eps=1e-8;
const long double pi=acos((long double)-1.0);
typedef long long ll;
const ll mod=1e9+7;
const ll mod2=998244353;
const ll mod3=1004535809;
const int maxn=1e6+5;
const ll linf=1LL<<62;
inline bool _zero(double x){return (((x)>0?(x):-(x))<eps);}
inline double _sq(double x){return x*x;}
inline ll sqr(ll a){return a*a;}
inline int _sign(double x){return ((x)>eps?1:((x)<-eps?2:0));}
}
namespace geo{
using namespace pre;
struct Point{//point(x,y)
double x,y;
Point():x(0),y(0){}
Point(double x,double y): x(x),y(y) {}
friend istream& operator >>(istream &in,Point &p){
in>>p.x>>p.y;
return in;
}
friend ostream& operator <<(ostream &out,const Point &p){
out<<p.x<<" "<<p.y;
return out;
}
Point operator + (Point b) const {return Point(x+b.x,y+b.y);}
Point operator - (Point b) const {return Point(x-b.x,y-b.y);}
Point operator * (double b) const {return Point(b*x,b*y);}
double operator * (Point b) const {return x*b.y-y*b.x;}
double operator & (Point b) const {return x*b.x+y*b.y;}
double distance() const {return sqrt(_sq(x)+_sq(y));}
Point unit() const {return Point(x/distance(),y/distance());}
bool operator < (const Point &b) const{//compare by polar
return (*this)*b>eps || _zero((*this)*b) && distance()<b.distance();
}
static bool comp(const Point &a,const Point &b){//compare by coordinate
return a.y<b.y || a.y==b.y && a.x<b.x;
}
double distance(Point p) const {
return (*(this)-p).distance();
}
double distance(Point p1,Point p2) const {
return (p2-p1).distance();
}
double xmult(Point p1,Point p2) const {//calculate a cross-mult base on itself
return (p1-(*this))*(p2-(*this));
}
double dmult(Point p1,Point p2) const {//calculate a dot-mult base on itself
return (p1-(*this))&(p2-(*this));
}
bool dots_inline(Point p1,Point p2) const{//three points in a line
return _zero(xmult(p1,p2));
}
Point rotate(Point p,double angle,double scale){ //base on Point contrarotate(anticlockwise) angle and enlarge scale times
Point ret=p;
x-=p.x,y-=p.y;
p.x=scale*cos(angle);
p.y=scale*sin(angle);
ret.x+=x*p.x-y*p.y;
ret.y+=x*p.y+y*p.x;
return ret;
}
double rag(Point a,Point b)const{//included angle
return acos((_sq(distance(a))+_sq(distance(b))-_sq(a.distance(b)))/(2*distance(a)*distance(b)));
}
Point pedal() const{
return Point(y,-x);
}
};
struct Polar//polar(radius,theta)
{
double radius,theta;
Polar():radius(0),theta(0){}
Polar(double theta):radius(1),theta(theta){}
Polar(double radius,double theta):radius(radius),theta(theta){}
Polar(Point p):radius(p.distance()),theta(atan2(p.y,p.x)){}
friend istream& operator >>(istream &in,Polar &p){
in>>p.radius>>p.theta;
return in;
}
friend ostream& operator <<(ostream &out,const Polar &p){
out<<p.radius<<" "<<p.theta;
return out;
}
bool operator < (const Polar &b)const{return theta<b.theta || theta==b.theta && radius<b.radius;}
Point topoint(){ //to point
return Point(radius*cos(theta),radius*sin(theta));
}
Polar unit(){ //unit circle
return Polar(theta);
}
};
struct Line{//line
Point a,b;
Line(): a(Point()),b(Point()){}
Line(Point a,Point b): a(a),b(b) {}
friend istream& operator >>(istream &in,Line &l){
in>>l.a>>l.b;
return in;
}
friend ostream& operator <<(ostream &out,const Line &l){
out<<l.a<<" "<<l.b;
return out;
}
Point midpoint() const {//mid point
return (a+b)*0.5;
}
double distance() const {//length
return a.distance(b);
}
bool dot_inline(Point p) {//if point in line
return _zero(p.xmult(a,b));
}
bool dot_online(Point p) {//if point in segment
return _zero(p.xmult(a,b))&&(a.x-p.x)*(b.x-p.x)<eps&&(a.y-p.y)*(b.y-p.y)<eps;
}
bool dot_online_in(Point p){//if point in segment except two point
return dot_online(p)&&(!_zero(p.x-a.x)||!_zero(p.y-a.y))&&(!_zero(p.x-b.x)||!_zero(p.y-b.y));
}
bool same_side(Point p1,Point p2){//if two points on same side except line
return a.xmult(b,p1)*a.xmult(b,p2)>eps;
}
bool opposite_side(Point p1,Point p2){//if two points on opposite side except line
return a.xmult(b,p1)*a.xmult(b,p2)<-eps;
}
bool parallel(Line v){//if two lines parallel
return _zero(Point().xmult(a-b,v.a-v.b));
}
bool parallel_ex(Line v){//if two lines parallel and not coincidence
return _zero(Point().xmult(a-b,v.a-v.b))&&!dot_inline(v.a);
}
bool perpendicular(Line v){//if two lines perpendicular
return _zero(Point().dmult(a-b,v.a-v.b));
}
bool intersect(Line v){//if two segments have same points
return !same_side(v.a,v.b)&&!v.same_side(a,b);
}
bool intersect_ex(Line v){//if two segments have only same point except end points
return opposite_side(v.a,v.b)&&v.opposite_side(a,b);
}
Point intersection(Line v){//calculate the intersection of two lines,please notice they are not parallel
Point ret=a;
double t=((a.x-v.a.x)*(v.a.y-v.b.y)-(a.y-v.a.y)*(v.a.x-v.b.x))
/((a.x-b.x)*(v.a.y-v.b.y)-(a.y-b.y)*(v.a.x-v.b.x));
return a+(b-a)*t;
}
Point pedal(Point p){//calculate the nearest point to the line,pedal
Point t=p;
t.x+=a.y-b.y,t.y+=b.x-a.x;
if(dot_inline(p)) return p;
return intersection(Line(p,t));
}
double distance(Point p){//calculate the distance from point to line
return fabs(b.xmult(p,a))/distance();
}
Point ptoseg(Point p){//calculate the nearest point to the segment
Point t=p;
t.x+=a.y-b.y,t.y+=b.x-a.x;
if (p.xmult(a,t)*p.xmult(b,t)>eps)
return a.distance(p)<b.distance(p)?a:b;
return pedal(p);
}
double disptoseg(Point p){//calculate the distance from point to segment
Point t=p;
t.x+=a.y-b.y,t.y+=b.x-a.x;
if (p.xmult(a,t)*p.xmult(b,t)>eps)
return Line(p,a).distance()<Line(p,b).distance()?Line(p,a).distance():Line(p,b).distance();
return fabs(b.xmult(p,a))/distance();
}
Line midperpendicular(){
return Line(midpoint(),midpoint()+(b-a).pedal());
}
Point definite_point(double rate){
Point v=b-a;
return a+v*rate;
}
};
struct General_line// ax+by+c=0 for general line expression exp
{
double a,b,c;
General_line():a(0),b(0),c(0){}
General_line(double a,double b,double c):a(a),b(b),c(c){}
General_line(Line l):a((l.a-l.b).y),b(-(l.a-l.b).x),c(-a*l.a.x-b*l.a.y){}
friend istream& operator >>(istream &in,General_line &l){
in>>l.a>>l.b>>l.c;
return in;
}
friend ostream& operator <<(ostream &out,const General_line &l){
out<<l.a<<" "<<l.b<<" "<<l.c;
return out;
}
Point symmetricalPointofLine(Point p){//calculate symmetric point of the line
double d=_sq(a)+_sq(b);
return Point((_sq(b)*p.x-_sq(a)*p.x-2*a*b*p.y-2*a*c)/d,(_sq(a)*p.y-_sq(b)*p.y-2*a*b*p.x-2*b*c)/d);
}
};
struct Circle//circle(point,radius)
{
Point center;
double radius;
Circle():center(Point()),radius(0){}
Circle(Point center,double radius):center(center),radius(radius){}
Circle(Line l): center(l.midpoint()),radius(l.distance()/2){}//diameter for a circle
friend istream& operator >>(istream &in,Circle &c){
in>>c.center>>c.radius;
return in;
}
friend ostream& operator <<(ostream &out,const Circle &c){
out<<c.center<<" "<<c.radius;
return out;
}
Circle(Point p1,Point p2,Point p3){//three points for a circle
Line u,v;
u.a=Line(p1,p2).midpoint();
u.b=Line(p1,p2).pedal(p3);
v.a=Line(p1,p3).midpoint();
v.b=Line(p1,p3).pedal(p2);
center=u.intersection(v);
radius=center.distance(p1);
}
double area() const{//the area
return pi*_sq(radius);
}
double perimeter(){//the perimeter
return 2.0*pi*radius;
}
bool inside_circle(Point p){//if point in circle
return center.distance(p)<radius+eps;
}
bool intersect(Line l){//if line and circle have intersection
return l.distance(center)<radius+eps;
}
bool intersect_ex(Line l){//if segment and circle have intersection
double t1=center.distance(l.a)-radius,t2=center.distance(l.b)-radius;
Point t=center;
if (t1<eps||t2<eps)
return t1>-eps||t2>-eps;
t.x+=l.a.y-l.b.y;
t.y+=l.b.x-l.a.x;
return t.xmult(l.a,center)*t.xmult(l.b,center)<eps&&l.distance(center)-radius<eps;
}
bool intersect(Circle c2){//if two circles have intersection
return center.distance(c2.center)<radius+c2.radius+eps&¢er.distance(c2.center)>fabs(radius-c2.radius)-eps;
}
int circleposition(Circle c2){ //relative location of two circles
double d=center.distance(c2.center),rs=radius+c2.radius,rd=radius-c2.radius;
if (_zero(d)&&_zero(rd)) return -2;//coincidence
if (_zero(rs-d)) return 4;//circumscribed
if (_zero(rd-d)) return 3;//inscribe and c2 in c
if (_zero(rd+d)) return -3;//inscribe and c in c2
if (d>rs) return 0;//separation of two circles from outside
if (intersect(c2)) return 2;//circle intersection
if (rd>0) return 1;//separation of two circles and c2 in c
return -1; //separation of two circles and c in c2
}
double intersection_area(Circle c2){
double dis=center.distance(c2.center);
if(radius+c2.radius<=dis)
return 0.0;
if(radius-c2.radius>=dis)
return c2.area();
if(c2.radius-radius>=dis)
return area();
double angle1 =acos((_sq(radius)+_sq(dis)-_sq(c2.radius))/(2*dis*radius));
double angle2 =acos((_sq(c2.radius)+_sq(dis)-_sq(radius))/(2*dis*c2.radius));
return _sq(radius)*angle1+_sq(c2.radius)*angle2-sin(angle1)*radius*dis;
}
Point intersection(Circle c2){//use if have intersection and return one of it
double dis=center.distance(c2.center);
Point p1=(center+c2.center)*0.5,p2=(c2.center-center)*0.5;
double i1=(_sq(radius)-_sq(c2.radius))/(_sq(dis)),i2=sqrt(2*(_sq(radius)+_sq(c2.radius))/(_sq(dis))-_sq(i1)-1);
return p1+p2*i1+Point(p2.y,p2.x)*i2;
}
double distance(Point p){
double dis=p.distance(center)-radius;
if(dis<0) return 0.0;
else return dis;
}
double distance(Line l){
double dis=l.distance(center)-radius;
if(dis<0) return 0.0;
else return dis;
}
double disptoseg(Line l){
double dis=l.disptoseg(center)-radius;
if(dis<0) return 0.0;
else return dis;
}
};
struct Triangle{//triangle
vector<Point> p;
Triangle(){p.resize(3);}
Triangle(Point a,Point b,Point c){p.resize(3);p[0]=a;p[1]=b;p[2]=c;}
double area()//the area
{
return fabs(p[0].xmult(p[1],p[2]))/2;
}
Point perpencenter()//the perpencenter,orthocenter of a triangle
{
Line u,v;
u.a=p[2];
u.b=Line(p[0],p[1]).pedal(p[2]);
v.a=p[1];
v.b=Line(p[0],p[2]).pedal(p[1]);
return u.intersection(v);
}
Point barycenter()//the barycenter of triangle,it's the point of lowest sum of square of distance to three points,it's the point of largest product of square of distance to three points in triangle
{
Line u,v;
u.a=Line(p[0],p[1]).midpoint();
u.b=p[2];
v.a=Line(p[0],p[2]).midpoint();
v.b=p[1];
return u.intersection(v);
}
Point circumcenter()//excenter of a triangle
{
Point tmp;
tmp.x=p[0].x+(0.5*(_sq(p[1].x-p[0].x)+_sq(p[1].y-p[0].y))*(p[2].y-p[0].y)-0.5*(_sq(p[2].x-p[0].x)+_sq(p[2].y-p[0].y))*(p[1].y-p[0].y))/((p[1].x-p[0].x)*(p[2].y-p[0].y)-(p[2].x-p[0].x)*(p[1].y-p[0].y));
tmp.y=p[0].y+(0.5*(_sq(p[2].x-p[0].x)+_sq(p[2].y-p[0].y))*(p[1].x-p[0].x)-0.5*(_sq(p[1].x-p[0].x)+_sq(p[1].y-p[0].y))*(p[2].x-p[0].x))/((p[1].x-p[0].x)*(p[2].y-p[0].y)-(p[2].x-p[0].x)*(p[1].y-p[0].y));
return tmp;
}
Point incenter()//incenter of a triangle
{
Line u,v;
double m,n;
u.a=p[0];
m=atan2(p[1].y-p[0].y,p[1].x-p[0].x);
n=atan2(p[2].y-p[0].y,p[2].x-p[0].x);
u.b.x=u.a.x+cos((m+n)/2);
u.b.y=u.a.y+sin((m+n)/2);
v.a=p[1];
m=atan2(p[0].y-p[1].y,p[0].x-p[1].x);
n=atan2(p[2].y-p[1].y,p[2].x-p[1].x);
v.b.x=v.a.x+cos((m+n)/2);
v.b.y=v.a.y+sin((m+n)/2);
return u.intersection(u);
}
Point fermentpoint(){//ferment point,the point of lowest sum of distance to three points
Point u,v;
double step=fabs(p[0].x)+fabs(p[0].y)+fabs(p[1].x)+fabs(p[1].y)+fabs(p[2].x)+fabs(p[2].y);
int i,j,k;
u.x=(p[0].x+p[1].x+p[2].x)/3;
u.y=(p[0].y+p[1].y+p[2].y)/3;
while (step>eps)
for (k=0;k<10;step/=2,k++)
for (i=-1;i<=1;i++)
for (j=-1;j<=1;j++){
v.x=u.x+step*i;
v.y=u.y+step*j;
if (u.distance(p[0])+u.distance(p[1])+u.distance(p[2])>v.distance(p[0])+v.distance(p[1])+v.distance(p[2]))
u=v;
}
return u;
}
Circle circumcircle(){//the circumcircle of the triangle
Circle tmp;
tmp.center.x=p[0].x+(0.5*(_sq(p[1].x-p[0].x)+_sq(p[1].y-p[0].y))*(p[2].y-p[0].y)-0.5*(_sq(p[2].x-p[0].x)+_sq(p[2].y-p[0].y))*(p[1].y-p[0].y))/((p[1].x-p[0].x)*(p[2].y-p[0].y)-(p[2].x-p[0].x)*(p[1].y-p[0].y));
tmp.center.y=p[0].y+(0.5*(_sq(p[2].x-p[0].x)+_sq(p[2].y-p[0].y))*(p[1].x-p[0].x)-0.5*(_sq(p[1].x-p[0].x)+_sq(p[1].y-p[0].y))*(p[2].x-p[0].x))/((p[1].x-p[0].x)*(p[2].y-p[0].y)-(p[2].x-p[0].x)*(p[1].y-p[0].y));
tmp.radius=tmp.center.distance(p[0]);
return tmp;
}
};
struct Polygon{ //polygon
int n;
vector<Point> p;
Polygon(): n(0){}
Polygon(int n,Point* p0): n(n) {for (int i=0;i<n;i++) p.push_back(p0[i]);}
Polygon(int n,vector<Point> p0): n(n) {p.assign(p0.begin(),p0.end());}
Polygon(vector<Point> p0): n(p0.size()) {p.assign(p0.begin(),p0.end());}
friend istream& operator >>(istream &in,Polygon &x){
in>>x.n;
x.p.resize(x.n);
for(int i=0;i<x.n;i++)
in>>x.p[i];
return in;
}
friend ostream& operator <<(ostream &out,const Polygon &x){
for(int i=0;i<x.p.size();i++) cout<<x.p[i]<<endl;
return out;
}
bool is_convex(){//if this is convex,edge collinear
int i,s[3]={1,1,1};
for (i=0;i<n&&s[1]|s[2];i++)
s[_sign(p[i].xmult(p[(i+1)%n],p[(i+2)%n]))]=0;
return s[1]|s[2];
}
bool is_convex_ex(){//if this is convex,no edge collinear
int i,s[3]={1,1,1};
for (i=0;i<n&&s[0]&&s[1]|s[2];i++)
s[_sign(p[i].xmult(p[(i+1)%n],p[(i+2)%n]))]=0;
return s[0]&&s[1]|s[2];
}
bool inside_convex(Point q){ //if point in convex
int i,s[3]={1,1,1};
for (i=0;i<n&&s[1]|s[2];i++)
s[_sign(p[i].xmult(p[(i+1)%n],q))]=0;
return s[1]|s[2];
}
bool inside_convex_ex(Point q){//if point in convex,except edge
int i,s[3]={1,1,1};
for (i=0;i<n&&s[0]&&s[1]|s[2];i++)
s[_sign(p[i].xmult(p[(i+1)%n],q))]=0;
return s[0]&&s[1]|s[2];
}
int inside_polygon(Point q,int on_edge=1){//if point in polygon,if on edge return on_edge
Point q2;
int i=0,count;
while (i<n)
for (count=i=0,q2.x=rand()+10000,q2.y=rand()+10000;i<n;i++)
if (_zero(p[(i+1)%n].xmult(q,p[i]))&&(p[i].x-q.x)*(p[(i+1)%n].x-q.x)<eps&&(p[i].y-q.y)*(p[(i+1)%n].y-q.y)<eps)
return on_edge;
else if (_zero(p[i].xmult(q,q2)))
break;
else if (q2.xmult(q,p[i])*q2.xmult(q,p[(i+1)%n])<-eps&&p[(i+1)%n].xmult(p[i],q)*p[(i+1)%n].xmult(p[i],q2)<-eps)
count++;
return count&1;
}
int inside_polygon(Line l)////if segments in convex include edge
{
Point l1=l.a,l2=l.b,tt;
vector<Point> t;
int i,j;
if (!inside_polygon(l1)||!inside_polygon(l2))
return 0;
for (i=0;i<n;i++)
if (Line(p[i],p[(i+1)%n]).opposite_side(l1,l2)&&l.opposite_side(p[i],p[(i+1)%n]))
return 0;
else if (Line(p[i],p[(i+1)%n]).dot_online_in(l1))
t.push_back(l1);
else if (Line(p[i],p[(i+1)%n]).dot_online_in(l2))
t.push_back(l2);
else if (Line(l1,l2).dot_online_in(p[i]))
t.push_back(p[i]);
for (i=0;i<t.size();i++)
for (j=i+1;j<t.size();j++){
tt.x=(t[i].x+t[j].x)/2;
tt.y=(t[i].y+t[j].y)/2;
if (!inside_polygon(tt))
return 0;
}
return 1;
}
Point barycenter(){//the barycenter of the polygon
Point ret,t;
double t1=0,t2;
int i;
ret.x=ret.y=0;
for (i=1;i<n-1;i++)
if (fabs(t2=p[i+1].xmult(p[0],p[i]))>eps){
t=Triangle(p[0],p[i],p[i+1]).barycenter();
ret.x+=t.x*t2;
ret.y+=t.y*t2;
t1+=t2;
}
if (fabs(t1)>eps)
ret.x/=t1,ret.y/=t1;
return ret;
}
double area(){//the area of the polygon
double s1=0,s2=0;
for(int i=0;i<n;i++)
s1+=p[(i+1)%n].y*p[i].x,s2+=p[(i+1)%n].y*p[(i+2)%n].x;
return fabs(s1-s2)/2;
}
double perimeter(){//the perimeter of the polygon
double pm=0;
if(n>1) pm=p[n-1].distance(p[0]);
for(int i=0;i<n-1;i++)
pm+=p[i].distance(p[i+1]);
return pm;
}
Polygon graham(){//Calculate the convex of polygon or points
Polygon g=(*this);
if(g.n<3) return g;
sort(g.p.begin(),g.p.end(),Point().comp);
Point bp=g.p[0];
for(int i=0;i<g.n;i++) g.p[i]=g.p[i]-bp;
sort(g.p.begin(),g.p.end());
Polygon gra;
gra.p.push_back(g.p[0]);
gra.p.push_back(g.p[1]);
int i=2;
for(i=2;i<n;i++)
{
while(gra.p.size()>1&&gra.p[gra.p.size()-2].xmult(gra.p[gra.p.size()-1],g.p[i])<eps) //<eps ¾ø¶Ô͹°ü <-eps ´ø180½Ç͹°ü
gra.p.pop_back();
gra.p.push_back(g.p[i]);
}
gra.n=gra.p.size();
for(int i=0;i<gra.n;i++) gra.p[i]=gra.p[i]+bp;
return gra;
}
Circle mincircle(){//calculate the min circle to cover polygon or points
Polygon g=*this;
random_shuffle(g.p.begin(),g.p.end());
Circle ans;
ans=Circle(g.p[0],0);
Point &c=ans.center;
double &r=ans.radius;
for(int i=1;i<n;i++)
{
if(c.distance(g.p[i])>r+eps)
{
ans=Circle(g.p[i],0);
for(int j=0;j<i;j++)
{
if(c.distance(g.p[j])>r+eps)
{
ans=Circle(Line(g.p[i],g.p[j]).midpoint(),g.p[i].distance(g.p[j])/2);
for(int k=0;k<j;k++) {
if(c.distance(g.p[k])>r+eps)
{
ans=Triangle(g.p[i],g.p[j],g.p[k]).circumcircle();
}
}
}
}
}
}
return ans;
}
double rotate_calipers(){
Polygon convex=graham();
if(convex.n<2) return 0;
double ans=convex.p[0].distance(convex.p[1]);
int q=1;
for(int i=0;i<convex.n;i++)
{
while(convex.p[(i+1)%convex.n].xmult(convex.p[q],convex.p[i])<convex.p[(i+1)%convex.n].xmult(convex.p[(q+1)%convex.n],convex.p[i]))
q=(q+1)%convex.n;
ans=max(ans,max(convex.p[q].distance(convex.p[i]),convex.p[(q+1)%convex.n].distance(convex.p[(i+1)%convex.n])));
}
return ans;
}
};
}
namespace mat{
using namespace pre;
ll mul(ll a, ll b,ll _mod=mod){return ((__int128)a*b)%_mod;}
ll mul2(ll a,ll b,ll _mod=mod){return ((a*b-(ll)((ll)((long double)a/_mod*b)*_mod))%_mod+_mod)%_mod;}
ll mul3(ll a,ll b,ll _mod=mod){//special multiplications
a%=_mod,b%=_mod;
ll ret=0;
while(b){
if(b&1) ret+=a,ret%=_mod;
a<<=1,a%=_mod,b>>=1;
}
return ret;
}
ll gcd(ll a,ll b){
if(a<0) a=-a;
if(b<0) b=-b;
if(a==0) return b;
if(b==0) return a;
while(a^=b^=a^=b%=a);
return b;
}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll exgcd(ll a,ll b,ll &x,ll &y){//exgcd can solve ax+by=gcd(a,b)
if(b){
ll c=exgcd(b,a%b,x,y),t=x;
x=y,y=t-a/b*y;
return c;
}
else{
x=1,y=0;
return a;
}
}
ll inv(ll a,ll _mod=mod){//multiplicative inverse for exgcd
ll x,y,d=exgcd(a,_mod,x,y);
if(d==1) return ((x%_mod)+_mod)%_mod;
return -1;
}
ll phi(ll n){//eular(x) if(x==prime)eular(x)=x-1 and a^k=a^(k%(x-1)) _mod x
ll res=n;
for (ll i=2;i*i<=n;i++)
if(n%i==0)
{
res=res-res/i;
while(n%i==0)n/=i;
}
if(n>1)res=res-res/n;
return res;
}
ll qpow(ll x,ll n,ll _mod=mod,ll _mul(ll,ll,ll)=mul){// quick_pow
ll tmp=x%_mod,ret=1;
if(n<0)
n=-n,tmp=inv(tmp,_mod);
while(n)
{
if(n&1)ret=_mul(ret,tmp,_mod);
tmp=_mul(tmp,tmp,_mod);
n>>=1;
}
return ret;
}
struct Complex{//complex
long double x,y;
Complex(long double x=0.0,long double y=0.0):x(x),y(y){}
friend istream& operator >>(istream &in,Complex &c)
{
in>>c.x>>c.y;
return in;
}
friend ostream& operator <<(ostream &out,const Complex& c)
{
out<<c.x<<" "<<c.y;
return out;
}
Complex exp(long double theta=0,long double r=1){
x=r*cos(theta),y=r*sin(theta);
return *this;
}
friend long double abs(const Complex _t){return sqrt(sqr(_t.x)+sqr(_t.y));}
friend long double re(const Complex _t){return _t.x;}
friend long double im(const Complex _t){return _t.y;}
Complex operator-(const Complex b)const {return Complex(x-b.x,y-b.y);}
Complex operator+(const Complex b)const {return Complex(x+b.x,y+b.y);}
Complex operator*(const Complex b)const {return Complex(x*b.x-y*b.y,x*b.y+y*b.x);}
Complex operator/(const Complex b)const {return Complex((x*b.x+y*b.y)/sqr(abs(b)),(-x*b.y+y*b.x)/sqr(abs(b)));}
Complex qpow(ll n){
Complex tmp=*this,ret=Complex(1);
while(n)
{
if(n&1)ret=ret*tmp;
tmp=tmp*tmp;
n>>=1;
}
return ret;
}
};
struct Vec{//vector
int n;
vector<ll> a;
ll _mod=mod;
Vec(int n=2,ll k=0):n(n){
a.resize(n,k);
}
friend istream& operator >>(istream &in,Vec &v)
{
in>>v.n;
v.a.resize(v.n);
for(int i=0;i<v.n;i++) in>>v.a[i];
return in;
}
friend ostream& operator <<(ostream &out,const Vec &v)
{
for(int i=0;i<v.n;i++) out<<v.a[i]<<(i==v.n-1?"\n":"");
return out;
}
Vec zeros(){
for(int i=0;i<n;i++)
a[i]=0;
return *this;
}
Vec eyes(){
for(int i=0;i<n;i++)
a[i]=1;
return *this;
}
Vec operator*(Vec &b){
assert(b.n==n);
Vec ans=Vec(n,0);
for(int i=0;i<n;i++)
ans.a[i]+=a[i]%_mod*(b.a[i]%_mod)%_mod,
ans.a[i]%=_mod;
return ans;
}
Vec operator+(Vec &b){
assert(b.n==n);
Vec ans=Vec(n,0);
for(int i=0;i<n;i++)
ans.a[i]=a[i]+b.a[i],
ans.a[i]%=_mod;
return ans;
}
Vec operator-(Vec &b){
assert(b.n==n);
Vec ans=Vec(n,0);
for(int i=0;i<n;i++)
ans.a[i]=a[i]-b.a[i],
ans.a[i]%=_mod;
return ans;
}
Vec qpow(ll n){
Vec tmp=*this,ret=*this;
ret.eyes();
while(n)
{
if(n&1)ret=ret*tmp;
tmp=tmp*tmp;
n>>=1;
}
return ret;
}
};
struct Matrix{//matrix
int n;
vector<vector<ll> > a;
ll _mod=mod;
Matrix(int n=2,ll k=0):n(n){
a.resize(n);
for(int i=0;i<a.size();i++)
a[i].resize(n,k);
}
friend istream& operator >>(istream &in,Matrix &m)
{
in>>m.n;
m.a.resize(m.n);
for(int i=0;i<m.a.size();i++)
m.a[i].resize(m.n);
for(int i=0;i<m.n;i++)
for(int j=0;j<m.n;j++)
in>>m.a[i][j];
return in;
}
friend ostream& operator <<(ostream &out,const Matrix &m)
{
for(int i=0;i<m.n;i++)
for(int j=0;j<m.n;j++)
out<<m.a[i][j]<<(j==m.n-1?(i==m.n-1?"":"\n"):" ");
return out;
}
Matrix zeros(){
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
a[i][j]=0;
return *this;
}
Matrix ones(){
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
a[i][j]=1;
return *this;
}
Matrix eyes(){
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
a[i][j]=(i==j);
return *this;
}
Matrix operator*(Matrix &b){
assert(b.n==n);
Matrix ans=Matrix(n,0);
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
for(int k=0;k<n;k++)
ans.a[i][j]+=a[i][k]%_mod*(b.a[k][j]%_mod)%_mod,
ans.a[i][j]%=_mod;
return ans;
}
Matrix operator+(Matrix &b){
assert(b.n==n);
Matrix ans=Matrix(n,0);
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
ans.a[i][j]=a[i][j]+b.a[i][j],
ans.a[i][j]%=_mod;
return ans;
}
Matrix operator-(Matrix &b){
assert(b.n==n);
Matrix ans=Matrix(n,0);
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
ans.a[i][j]=a[i][j]-b.a[i][j],
ans.a[i][j]%=_mod;
return ans;
}
Matrix qpow(ll n){
Matrix tmp=*this,ret=*this;
ret.eyes();
while(n)
{
if(n&1)ret=ret*tmp;
tmp=tmp*tmp;
n>>=1;
}
return ret;
}
bool mat_inv(){
vector<int> is,js;
is.resize(n,-1);
js.resize(n,-1);
for(int k=0;k<n;k++){
for(int i=k;i<n;i++)
for(int j=k;j<n;j++)if(a[i][j]){
is[k]=i,js[k]=j;break;
}
if(is[k]==-1||js[k]==-1) return 0;
for(int i=0;i<n;i++) // 2
swap(a[k][i],a[is[k]][i]);
for(int i=0;i<n;i++)
swap(a[i][k],a[i][js[k]]);
if(!a[k][k]){
return 0;
}
a[k][k]=inv(a[k][k]);
for(int j=0;j<n;j++)if(j!=k)
(a[k][j]*=a[k][k])%=_mod;
for(int i=0;i<n;i++)if(i!=k)
for(int j=0;j<n;j++)if(j!=k)
(a[i][j]+=_mod-a[i][k]*a[k][j]%_mod)%=_mod;
for(int i=0;i<n;i++)
if(i!=k)
a[i][k]=(_mod-a[i][k]*a[k][k]%_mod)%_mod;
}
for(int k=n-1;k>=0;k--){
for(int i=0;i<n;i++)
swap(a[js[k]][i],a[k][i]);
for(int i=0;i<n;i++)
swap(a[i][is[k]],a[i][k]);
}
return 1;
}
};
vector<ll> fac,fac2;//factorial
void fac_init(ll _size=maxn,ll _mod=mod){// x! factorial and init for arrangements and combinations
fac.resize(_size+1);
fac[0]=1;
for(ll i=1;i<=_size;i++)fac[i]=fac[i-1]*i%_mod;
}
void fac2_init(ll _size=maxn,ll _mod=mod){// x!!
fac2.resize(_size+1);
fac2[0]=fac2[1]=1;
for(ll i=2;i<=_size;i++)fac[i]=fac[i-2]*i%_mod;
}
ll arrangements(ll m,ll n,ll _mod=mod){//arrangements
if(m<n) return 0;
return fac[m]*inv(fac[m-n],_mod)%_mod;
}
ll combinations(ll m,ll n,ll _mod=mod){//combinations
if(m<n) return 0;
return fac[m]*inv(fac[n]*fac[m-n]%_mod,_mod)%_mod;
}
ll lucas_combinations(ll m,ll n,ll _mod=mod){
if(n==0) return 1;
return combinations(m%_mod,n%_mod,_mod)*(lucas_combinations(m/_mod,n/_mod,_mod))%_mod;
}
ll catalan(ll n,ll _mod=mod){//catalan(n)=catanlan(n-1)*(4n-2)/(n+1)
return (combinations(2*n,n)-combinations(2*n,n-1)+_mod)%_mod;
}
vector<int> prime,mpfactor,eular,mu;//prime,minimum prime factor,eular,mobius
void prime_init(ll _size=maxn){//init for any prime sections
prime.resize(_size+1),mpfactor.resize(_size+1),eular.resize(_size+1),mu.resize(_size+1);
for (int i=0;i<=_size;i++) mpfactor[i]=i,eular[i]=i-1,mu[i]=0;
eular[0]=0,eular[1]=1,mu[1]=1;
int tot=0;
for(int i=2;i<=_size;i++)
{
if(mpfactor[i]==i) prime[tot++]=i,mu[i]=-1;
for(int j=0,t1;j<tot&&(t1=prime[j]*i)<=_size;j++)
{
mpfactor[t1]=prime[j];
if (i%prime[j]==0){
eular[t1]=eular[i]*prime[j],mu[t1]=0;
break;
}
else eular[t1]=eular[i]*(prime[j]-1),mu[t1]=-mu[i];
}
}
prime.resize(tot);
}
bool miller_rabin(ll n,int repeat=10){//check for big prime
if(n==2||n==3) return true;
if(n<2||(n&1)==0) return false;
srand(time(NULL));
ll d=n-1,s=__builtin_ctzll(d);
d>>=s;
while(repeat--){
ll a=qpow(rand()%(n-1)+1,d,n);
if(a==1) continue;
for(int j=1;j<=s&&a!=1;j++)
a=mul(a,a,n);
if(a!=1) return false;
}
return true;
}
ll pollard_rho(ll n){//if x has more than a factor run this to looking for a factor
srand(time(NULL));
if(n==4)return 2;
while(1)
{
ll c=rand()%(n-1)+1;
ll t=c%n,r=(mul(t,t,n)+c)%n;
while (t!=r)
{
ll d=gcd(t-r,n);
if (d>1) return d;
t=(mul(t,t,n)+c)%n,r=(mul(r,r,n)+c)%n,r=(mul(r,r,n)+c)%n;
}
}
}
vector<ll> factor;
void findfactor(ll n,bool flag=1)//finding
{
if(flag)
{
factor.clear();
if(n<2) return;
}
if(miller_rabin(n))
{
factor.push_back(n);
return;
}
ll p=n;
while(p>=n)p=pollard_rho(p);
findfactor(p,0);
findfactor(n/p,0);
}
ll poly_sz;
vector<int> pos;
ll ntt_mod=998244353,ntt_g=3;
ll fwt_mod=998244353;
void polynomial_init(int init_size=maxn){
int j=-1;
for(poly_sz=1;poly_sz<=init_size;poly_sz<<=1,j++);
pos.resize(poly_sz);
for(int i=0;i<poly_sz;i++) pos[i]=pos[i>>1]>>1|((i&1)<<j);
}
void fft(vector<Complex> &a,int opt){//opt=+-1
a.resize(poly_sz);
for(int i=0;i<poly_sz;i++) if(i<pos[i]) swap(a[i],a[pos[i]]);
for(int i=1;i<poly_sz;i<<=1){
Complex wn(cos(pi/i),opt*sin(pi/i));
for(int j=0;j<poly_sz;j+=i<<1){
Complex w(1,0);
for(int k=0;k<i;k++,w=w*wn){
Complex p=a[j+k],q=w*a[j+k+i];
a[j+k]=p+q,a[j+k+i]=p-q;
}
}
}
if(opt==-1) for(int i=0;i<poly_sz;i++) a[i]=a[i]/Complex(poly_sz,0);
}
void fft_mul(vector<Complex> &a,vector<Complex> &b){
for(int i=0;i<poly_sz;i++)
a[i]=a[i]*b[i];
}
void ntt(vector<ll> &a,int opt)
{
a.resize(poly_sz);
for(int i=0;i<poly_sz;i++) if(i<pos[i]) swap(a[i],a[pos[i]]);
for(int i=1;i<poly_sz;i<<=1){
ll gn=qpow(ntt_g,(ntt_mod-1)/(i<<1)*opt,ntt_mod);
for(int j=0;j<poly_sz;j+=i<<1){
ll g=1;
for(int k=0;k<i;k++,g=g*gn%ntt_mod){
ll p=a[j+k],q=g*a[j+k+i]%ntt_mod;
a[j+k]=(p+q)%ntt_mod,a[j+k+i]=(p-q+ntt_mod)%ntt_mod;
}
}
}
if(opt==-1){
ll invp=inv(poly_sz,ntt_mod);
for(int i=0;i<poly_sz;i++) a[i]=a[i]*invp%ntt_mod;
}
}
void ntt_mul(vector<ll> &a,vector<ll> &b){
for(int i=0;i<poly_sz;i++)
a[i]=mul(a[i],b[i],ntt_mod);
}
void fwt_or(vector<ll> &a,int opt)
{
a.resize(poly_sz);
for(int i=1;i<poly_sz;i<<=1)