-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathprefix.go
289 lines (257 loc) · 8.53 KB
/
prefix.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
// Copyright 2015, Joe Tsai. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package brotli
const (
// RFC section 3.5.
// This is the maximum bit-width of a prefix code.
// Thus, it is okay to use uint32 to store codes.
maxPrefixBits = 15
// RFC section 3.3.
// The size of the alphabet for various prefix codes.
numLitSyms = 256 // Literal symbols
maxNumDistSyms = 16 + 120 + (48 << 3) // Distance symbols
numIaCSyms = 704 // Insert-and-copy length symbols
numBlkCntSyms = 26 // Block count symbols
maxNumBlkTypeSyms = 256 + 2 // Block type symbols
maxNumCtxMapSyms = 256 + 16 // Context map symbols
// This should be the max of each of the constants above.
maxNumAlphabetSyms = numIaCSyms
)
var (
// RFC section 3.4.
// Prefix code lengths for simple codes.
simpleLens1 = [1]uint{0}
simpleLens2 = [2]uint{1, 1}
simpleLens3 = [3]uint{1, 2, 2}
simpleLens4a = [4]uint{2, 2, 2, 2}
simpleLens4b = [4]uint{1, 2, 3, 3}
// RFC section 3.5.
// Prefix code lengths for complex codes as they appear in the stream.
complexLens = [18]uint{
1, 2, 3, 4, 0, 5, 17, 6, 16, 7, 8, 9, 10, 11, 12, 13, 14, 15,
}
)
type rangeCode struct {
base uint32 // Starting base offset of the range
bits uint32 // Bit-width of a subsequent integer to add to base offset
}
var (
// RFC section 5.
// LUT to convert an insert symbol to an actual insert length.
insLenRanges []rangeCode
// RFC section 5.
// LUT to convert an copy symbol to an actual copy length.
cpyLenRanges []rangeCode
// RFC section 6.
// LUT to convert an block-type length symbol to an actual length.
blkLenRanges []rangeCode
// RFC section 7.3.
// LUT to convert RLE symbol to an actual repeat length.
maxRLERanges []rangeCode
)
type prefixCode struct {
sym uint32 // The symbol being mapped
val uint32 // Value of the prefix code (must be in [0..1<<len])
len uint32 // Bit length of the prefix code
}
var (
// RFC section 3.5.
// Prefix codecs for code lengths in complex prefix definition.
codeCLens []prefixCode
decCLens prefixDecoder
encCLens prefixEncoder
// RFC section 7.3.
// Prefix codecs for RLEMAX in context map definition.
codeMaxRLE []prefixCode
decMaxRLE prefixDecoder
encMaxRLE prefixEncoder
// RFC section 9.1.
// Prefix codecs for WBITS in stream header definition.
codeWinBits []prefixCode
decWinBits prefixDecoder
encWinBits prefixEncoder
// RFC section 9.2.
// Prefix codecs used for size fields in meta-block header definition.
codeCounts []prefixCode
decCounts prefixDecoder
encCounts prefixEncoder
)
var (
// RFC section 5.
// Table to convert insert-and-copy symbols to insert and copy lengths.
iacLUT [numIaCSyms]struct{ ins, cpy rangeCode }
// RFC section 4.
// Table to help convert short-codes (first 16 symbols) to distances using
// the ring buffer of past distances.
distShortLUT [16]struct{ index, delta int }
// RFC section 4.
// Table to help convert long-codes to distances. This is two dimensional
// slice keyed by the NPOSTFIX and the normalized distance symbol.
distLongLUT [4][]rangeCode
)
func initPrefixLUTs() {
// Sanity check some constants.
for _, numMax := range []uint{
numLitSyms, maxNumDistSyms, numIaCSyms, numBlkCntSyms, maxNumBlkTypeSyms, maxNumCtxMapSyms,
} {
if numMax > maxNumAlphabetSyms {
panic("maximum alphabet size is not updated")
}
}
if maxNumAlphabetSyms >= 1<<prefixSymbolBits {
panic("maximum alphabet size is too large to represent")
}
if maxPrefixBits >= 1<<prefixCountBits {
panic("maximum prefix bit-length is too large to represent")
}
initPrefixRangeLUTs()
initPrefixCodeLUTs()
initLengthLUTs()
}
func initPrefixRangeLUTs() {
makeRanges := func(base uint, bits []uint) (rc []rangeCode) {
for _, nb := range bits {
rc = append(rc, rangeCode{base: uint32(base), bits: uint32(nb)})
base += 1 << nb
}
return rc
}
insLenRanges = makeRanges(0, []uint{
0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 9, 10, 12, 14, 24,
}) // RFC section 5
cpyLenRanges = makeRanges(2, []uint{
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 9, 10, 24,
}) // RFC section 5
blkLenRanges = makeRanges(1, []uint{
2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 7, 8, 9, 10, 11, 12, 13, 24,
}) // RFC section 6
maxRLERanges = makeRanges(2, []uint{
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
}) // RFC section 7.3
}
func initPrefixCodeLUTs() {
// Prefix code for reading code lengths in RFC section 3.5.
codeCLens = nil
for sym, clen := range []uint{2, 4, 3, 2, 2, 4} {
code := prefixCode{sym: uint32(sym), len: uint32(clen)}
codeCLens = append(codeCLens, code)
}
decCLens.Init(codeCLens, true)
encCLens.Init(codeCLens)
// Prefix code for reading RLEMAX in RFC section 7.3.
codeMaxRLE = []prefixCode{{sym: 0, val: 0, len: 1}}
for i := uint32(0); i < 16; i++ {
code := prefixCode{sym: i + 1, val: i<<1 | 1, len: 5}
codeMaxRLE = append(codeMaxRLE, code)
}
decMaxRLE.Init(codeMaxRLE, false)
encMaxRLE.Init(codeMaxRLE)
// Prefix code for reading WBITS in RFC section 9.1.
codeWinBits = nil
for i := uint32(9); i <= 24; i++ {
var code prefixCode
switch {
case i == 16:
code = prefixCode{sym: i, val: (i-16)<<0 | 0, len: 1} // Symbols: 16
case i > 17:
code = prefixCode{sym: i, val: (i-17)<<1 | 1, len: 4} // Symbols: 18..24
case i < 17:
code = prefixCode{sym: i, val: (i-8)<<4 | 1, len: 7} // Symbols: 9..15
default:
code = prefixCode{sym: i, val: (i-17)<<4 | 1, len: 7} // Symbols: 17
}
codeWinBits = append(codeWinBits, code)
}
codeWinBits[0].sym = 0 // Invalid code "1000100" to use symbol zero
decWinBits.Init(codeWinBits, false)
encWinBits.Init(codeWinBits)
// Prefix code for reading counts in RFC section 9.2.
// This is used for: NBLTYPESL, NBLTYPESI, NBLTYPESD, NTREESL, and NTREESD.
codeCounts = []prefixCode{{sym: 1, val: 0, len: 1}}
code := codeCounts[len(codeCounts)-1]
for i := uint32(0); i < 8; i++ {
for j := uint32(0); j < 1<<i; j++ {
code.sym = code.sym + 1
code.val = j<<4 | i<<1 | 1
code.len = i + 4
codeCounts = append(codeCounts, code)
}
}
decCounts.Init(codeCounts, false)
encCounts.Init(codeCounts)
}
func initLengthLUTs() {
// RFC section 5.
// The insert-and-copy length symbol is converted into an insert length
// and a copy length. Thus, create a table to precompute the result for
// all input symbols.
for iacSym := range iacLUT {
var insSym, cpySym int
switch iacSym / 64 {
case 0, 2: // 0..63 and 128..191
insSym, cpySym = 0, 0
case 1, 3: // 64..127 and 192..255
insSym, cpySym = 0, 8
case 4: // 256..319
insSym, cpySym = 8, 0
case 5: // 320..383
insSym, cpySym = 8, 8
case 6: // 384..447
insSym, cpySym = 0, 16
case 7: // 448..511
insSym, cpySym = 16, 0
case 8: // 512..575
insSym, cpySym = 8, 16
case 9: // 576..639
insSym, cpySym = 16, 8
case 10: // 640..703
insSym, cpySym = 16, 16
}
r64 := iacSym % 64
insSym += r64 >> 3 // Lower 3 bits
cpySym += r64 & 0x07 // Upper 3 bits
iacLUT[iacSym].ins = insLenRanges[insSym]
iacLUT[iacSym].cpy = cpyLenRanges[cpySym]
}
// RFC section 4.
// The first 16 symbols modify a previously seen symbol. Thus, we can create
// a table to determine which distance to use and how much to modify it by.
for distSym := range distShortLUT {
var index, delta int
switch {
case distSym < 4:
index, delta = distSym, 0
case distSym < 10:
index, delta = 0, distSym/2-1
case distSym < 16:
index, delta = 1, distSym/2-4
}
if distSym%2 == 0 {
delta *= -1
}
distShortLUT[distSym].index = index
distShortLUT[distSym].delta = delta
}
// RFC section 4.
// Longer distances are computed according the equation in the RFC.
// To reduce computation during runtime, we precompute as much of the output
// as possible. Thus, we compute the final distance using the following:
// rec := distLongLUT[NPOSTFIX][distSym - (16+NDIRECT)]
// distance := NDIRECT + rec.base + ReadBits(rec.bits)<<NPOSTFIX
for npostfix := range distLongLUT {
numDistSyms := 48 << uint(npostfix)
distLongLUT[npostfix] = make([]rangeCode, numDistSyms)
for distSym := range distLongLUT[npostfix] {
postfixMask := 1<<uint(npostfix) - 1
hcode := distSym >> uint(npostfix)
lcode := distSym & postfixMask
nbits := 1 + distSym>>uint(npostfix+1)
offset := ((2 + (hcode & 1)) << uint(nbits)) - 4
distLongLUT[npostfix][distSym] = rangeCode{
base: uint32(offset<<uint(npostfix) + lcode + 1),
bits: uint32(nbits),
}
}
}
}