-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplotter_individual.py
136 lines (94 loc) · 4.75 KB
/
plotter_individual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Sep 19 14:47:06 2022
@author: guane
"""
#%% Libraries
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import os
#%% Load data and variables
df = pd.read_excel("data/Metrics-3.xlsx", index_col=0, sheet_name='Table')
data = np.asarray(df.iloc[1:,2:])
data_base = {'Argone IL':0, 'Beijing':7, 'Chengdu':14 }
names = ['MSE-RNN','MSE-GRU','MSE-LSTM', 'Kernel MSE-RNN', 'Kernel MSE-GRU',
'Kernel MSE-LSTM','L1-RNN', 'L1-GRU', 'L1-LSTM', 'Proposal-RNN',
'Proposal-GRU', 'Proposal-LSTM']
metrics = ['MSE', 'RMSE', 'MAE', 'MAPE']
values = [0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44]
colors = ["black", "dimgray", "grey",
"blue", "darkblue", "skyblue",
"green", "lightgreen", "yellowgreen",
"magenta", "pink", "violet"]
ranking_aux = pd.read_excel("data/Metrics-3.xlsx", index_col=0, sheet_name='Ranking-Individual')
data = np.asarray(df.iloc[1:,2:])
#data_ranking = {'Argone IL':np.asarray(ranking_aux['Ranking Argone'][1:]),
# 'Beijing':np.asarray(ranking_aux['Ranking Beijing'][1:]),
# 'Chengdu':np.asarray(ranking_aux['Ranking Chengdu'][1:]) }
Argone = np.asarray(ranking_aux['Ranking Argone'][1:])
Beijing = np.asarray(ranking_aux['Ranking Beijing'][1:])
Chengdu = np.asarray(ranking_aux['Ranking Chengdu'][1:])
os.chdir('/Users/guane/Documentos/Programming/Doctorate/Method Comparisons/results')
#%% Code
n_rows = len(metrics)
n_cols = len(data_base)
n_methods = 12
size_letters = 30
size_line = 6
j = 0
count_ranking = 0
for row in range(n_rows):
print(' =============================== \n Metrics {} \n =============================== '.format(metrics[row]))
index_metric = [values[k] + j for k in range(len(values))]
#print(index_metric, '\n')
for col in range(n_cols):
name = list(data_base.keys())[col]
print('\n --------- Data base: {} --------- \n'.format(list(data_base.keys())[col]))
index = n_cols * row + col
index_init = data_base[list(data_base.keys())[col]]
index_final = index_init + 7
list_legend = []
plt.figure(figsize=(20, 30))
for i in range(len(index_metric)):
index_model = index_metric[i]
if name == 'Argone IL':
#name_string = '{modelo}: {ranking}'.format(modelo=names[i], ranking=Argone[index_model] )
name_string = '{ranking}'.format(ranking=round(Argone[index_model], 2) )
elif name == 'Beijing':
#name_string = '{modelo}: {ranking}'.format(modelo=names[i], ranking=Beijing[index_model] )
name_string = '{ranking}'.format(ranking=round(Beijing[index_model], 2) )
elif name == 'Chengdu':
#name_string = '{modelo}: {ranking}'.format(modelo=names[i], ranking=Chengdu[index_model] )
name_string = '{ranking}'.format(ranking=round(Chengdu[index_model], 2) )
print(name_string)
plt.plot(data[index_metric[i], index_init:index_final], linestyle='--', linewidth=size_line, label=name_string, color=colors[i])
plt.yscale('log')
plt.grid(True)
plt.ylabel(metrics[row], fontsize=size_letters)
plt.xlabel('Steps', fontsize=size_letters)
#plt.title(list(data_base.keys())[col], fontsize=20)
#plt.xlabel('Steps', fontsize=20)
plt.xticks(np.arange(0,7,1), list(np.arange(1,8,1)), fontsize=size_letters)
plt.yticks(fontsize=size_letters)
#plt.legend(bbox_to_anchor=(1.05, 0), loc=3, borderaxespad=0, fontsize=30)
#plt.legend(loc='lower left', borderaxespad=0, fontsize=30)
#plt.legend(bbox_to_anchor=(0.5, -0.2), loc='upper center', ncol=4)
#plt.legend(bbox_to_anchor=(0.5, -0.2), loc='upper center', ncol=4)
#plt.legend(loc='lower center', bbox_to_anchor=(0.5, -0.55), ncol=4, fancybox=True, shadow=True, fontsize=size_letters)
plt.legend('',frameon=False)
#plt.tight_layout(pad=2.0)
plt.xlim(0,6)
#list_legend.append(data[index_metric[i], index_init:index_final])
#count +=1
"""plt.title(label=name, fontsize=size_letters)"""
#plt.legend()
#plt.show()
name_plotter = metrics[row] + '_' + name + '.png'
print(name_plotter)
#plt.savefig(name_plotter, bbox_inches='tight')
print(" ")
count_ranking += len(names)
j += 1
plt.savefig('Resultados.eps', format='eps')