-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathFlowEdit_utils.py
404 lines (309 loc) · 13.6 KB
/
FlowEdit_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
from typing import Optional, Tuple, Union
import torch
from diffusers import FlowMatchEulerDiscreteScheduler
from tqdm import tqdm
import numpy as np
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import retrieve_timesteps
def scale_noise(
scheduler,
sample: torch.FloatTensor,
timestep: Union[float, torch.FloatTensor],
noise: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
"""
Foward process in flow-matching
Args:
sample (`torch.FloatTensor`):
The input sample.
timestep (`int`, *optional*):
The current timestep in the diffusion chain.
Returns:
`torch.FloatTensor`:
A scaled input sample.
"""
# if scheduler.step_index is None:
scheduler._init_step_index(timestep)
sigma = scheduler.sigmas[scheduler.step_index]
sample = sigma * noise + (1.0 - sigma) * sample
return sample
# for flux
def calculate_shift(
image_seq_len,
base_seq_len: int = 256,
max_seq_len: int = 4096,
base_shift: float = 0.5,
max_shift: float = 1.16,
):
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
b = base_shift - m * base_seq_len
mu = image_seq_len * m + b
return mu
def calc_v_sd3(pipe, src_tar_latent_model_input, src_tar_prompt_embeds, src_tar_pooled_prompt_embeds, src_guidance_scale, tar_guidance_scale, t):
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(src_tar_latent_model_input.shape[0])
# joint_attention_kwargs = {}
# # add timestep to joint_attention_kwargs
# joint_attention_kwargs["timestep"] = timestep[0]
# joint_attention_kwargs["timestep_idx"] = i
with torch.no_grad():
# # predict the noise for the source prompt
noise_pred_src_tar = pipe.transformer(
hidden_states=src_tar_latent_model_input,
timestep=timestep,
encoder_hidden_states=src_tar_prompt_embeds,
pooled_projections=src_tar_pooled_prompt_embeds,
joint_attention_kwargs=None,
return_dict=False,
)[0]
# perform guidance source
if pipe.do_classifier_free_guidance:
src_noise_pred_uncond, src_noise_pred_text, tar_noise_pred_uncond, tar_noise_pred_text = noise_pred_src_tar.chunk(4)
noise_pred_src = src_noise_pred_uncond + src_guidance_scale * (src_noise_pred_text - src_noise_pred_uncond)
noise_pred_tar = tar_noise_pred_uncond + tar_guidance_scale * (tar_noise_pred_text - tar_noise_pred_uncond)
return noise_pred_src, noise_pred_tar
def calc_v_flux(pipe, latents, prompt_embeds, pooled_prompt_embeds, guidance, text_ids, latent_image_ids, t):
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latents.shape[0])
# joint_attention_kwargs = {}
# # add timestep to joint_attention_kwargs
# joint_attention_kwargs["timestep"] = timestep[0]
# joint_attention_kwargs["timestep_idx"] = i
with torch.no_grad():
# # predict the noise for the source prompt
noise_pred = pipe.transformer(
hidden_states=latents,
timestep=timestep / 1000,
guidance=guidance,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
pooled_projections=pooled_prompt_embeds,
joint_attention_kwargs=None,
return_dict=False,
)[0]
return noise_pred
@torch.no_grad()
def FlowEditSD3(pipe,
scheduler,
x_src,
src_prompt,
tar_prompt,
negative_prompt,
T_steps: int = 50,
n_avg: int = 1,
src_guidance_scale: float = 3.5,
tar_guidance_scale: float = 13.5,
n_min: int = 0,
n_max: int = 15,):
device = x_src.device
timesteps, T_steps = retrieve_timesteps(scheduler, T_steps, device, timesteps=None)
num_warmup_steps = max(len(timesteps) - T_steps * scheduler.order, 0)
pipe._num_timesteps = len(timesteps)
pipe._guidance_scale = src_guidance_scale
# src prompts
(
src_prompt_embeds,
src_negative_prompt_embeds,
src_pooled_prompt_embeds,
src_negative_pooled_prompt_embeds,
) = pipe.encode_prompt(
prompt=src_prompt,
prompt_2=None,
prompt_3=None,
negative_prompt=negative_prompt,
do_classifier_free_guidance=pipe.do_classifier_free_guidance,
device=device,
)
# tar prompts
pipe._guidance_scale = tar_guidance_scale
(
tar_prompt_embeds,
tar_negative_prompt_embeds,
tar_pooled_prompt_embeds,
tar_negative_pooled_prompt_embeds,
) = pipe.encode_prompt(
prompt=tar_prompt,
prompt_2=None,
prompt_3=None,
negative_prompt=negative_prompt,
do_classifier_free_guidance=pipe.do_classifier_free_guidance,
device=device,
)
# CFG prep
src_tar_prompt_embeds = torch.cat([src_negative_prompt_embeds, src_prompt_embeds, tar_negative_prompt_embeds, tar_prompt_embeds], dim=0)
src_tar_pooled_prompt_embeds = torch.cat([src_negative_pooled_prompt_embeds, src_pooled_prompt_embeds, tar_negative_pooled_prompt_embeds, tar_pooled_prompt_embeds], dim=0)
# initialize our ODE Zt_edit_1=x_src
zt_edit = x_src.clone()
for i, t in tqdm(enumerate(timesteps)):
if T_steps - i > n_max:
continue
t_i = t/1000
if i+1 < len(timesteps):
t_im1 = (timesteps[i+1])/1000
else:
t_im1 = torch.zeros_like(t_i).to(t_i.device)
if T_steps - i > n_min:
# Calculate the average of the V predictions
V_delta_avg = torch.zeros_like(x_src)
for k in range(n_avg):
fwd_noise = torch.randn_like(x_src).to(x_src.device)
zt_src = (1-t_i)*x_src + (t_i)*fwd_noise
zt_tar = zt_edit + zt_src - x_src
src_tar_latent_model_input = torch.cat([zt_src, zt_src, zt_tar, zt_tar]) if pipe.do_classifier_free_guidance else (zt_src, zt_tar)
Vt_src, Vt_tar = calc_v_sd3(pipe, src_tar_latent_model_input,src_tar_prompt_embeds, src_tar_pooled_prompt_embeds, src_guidance_scale, tar_guidance_scale, t)
V_delta_avg += (1/n_avg) * (Vt_tar - Vt_src) # - (hfg-1)*( x_src))
# propagate direct ODE
zt_edit = zt_edit.to(torch.float32)
zt_edit = zt_edit + (t_im1 - t_i) * V_delta_avg
zt_edit = zt_edit.to(V_delta_avg.dtype)
else: # i >= T_steps-n_min # regular sampling for last n_min steps
if i == T_steps-n_min:
# initialize SDEDIT-style generation phase
fwd_noise = torch.randn_like(x_src).to(x_src.device)
xt_src = scale_noise(scheduler, x_src, t, noise=fwd_noise)
xt_tar = zt_edit + xt_src - x_src
src_tar_latent_model_input = torch.cat([xt_tar, xt_tar, xt_tar, xt_tar]) if pipe.do_classifier_free_guidance else (xt_src, xt_tar)
_, Vt_tar = calc_v_sd3(pipe, src_tar_latent_model_input,src_tar_prompt_embeds, src_tar_pooled_prompt_embeds, src_guidance_scale, tar_guidance_scale, t)
xt_tar = xt_tar.to(torch.float32)
prev_sample = xt_tar + (t_im1 - t_i) * (Vt_tar)
prev_sample = prev_sample.to(noise_pred_tar.dtype)
xt_tar = prev_sample
return zt_edit if n_min == 0 else xt_tar
@torch.no_grad()
def FlowEditFLUX(pipe,
scheduler,
x_src,
src_prompt,
tar_prompt,
negative_prompt,
T_steps: int = 28,
n_avg: int = 1,
src_guidance_scale: float = 1.5,
tar_guidance_scale: float = 5.5,
n_min: int = 0,
n_max: int = 24,):
device = x_src.device
orig_height, orig_width = x_src.shape[2]*pipe.vae_scale_factor//2, x_src.shape[3]*pipe.vae_scale_factor//2
num_channels_latents = pipe.transformer.config.in_channels // 4
pipe.check_inputs(
prompt=src_prompt,
prompt_2=None,
height=orig_height,
width=orig_width,
callback_on_step_end_tensor_inputs=None,
max_sequence_length=512,
)
x_src, latent_src_image_ids = pipe.prepare_latents(batch_size= x_src.shape[0], num_channels_latents=num_channels_latents, height=orig_height, width=orig_width, dtype=x_src.dtype, device=x_src.device, generator=None,latents=x_src)
x_src_packed = pipe._pack_latents(x_src, x_src.shape[0], num_channels_latents, x_src.shape[2], x_src.shape[3])
latent_tar_image_ids = latent_src_image_ids
# 5. Prepare timesteps
sigmas = np.linspace(1.0, 1 / T_steps, T_steps)
image_seq_len = x_src_packed.shape[1]
mu = calculate_shift(
image_seq_len,
scheduler.config.base_image_seq_len,
scheduler.config.max_image_seq_len,
scheduler.config.base_shift,
scheduler.config.max_shift,
)
timesteps, T_steps = retrieve_timesteps(
scheduler,
T_steps,
device,
timesteps=None,
sigmas=sigmas,
mu=mu,
)
num_warmup_steps = max(len(timesteps) - T_steps * pipe.scheduler.order, 0)
pipe._num_timesteps = len(timesteps)
# src prompts
(
src_prompt_embeds,
src_pooled_prompt_embeds,
src_text_ids,
) = pipe.encode_prompt(
prompt=src_prompt,
prompt_2=None,
device=device,
)
# tar prompts
pipe._guidance_scale = tar_guidance_scale
(
tar_prompt_embeds,
tar_pooled_prompt_embeds,
tar_text_ids,
) = pipe.encode_prompt(
prompt=tar_prompt,
prompt_2=None,
device=device,
)
# handle guidance
if pipe.transformer.config.guidance_embeds:
src_guidance = torch.tensor([src_guidance_scale], device=device)
src_guidance = src_guidance.expand(x_src_packed.shape[0])
tar_guidance = torch.tensor([tar_guidance_scale], device=device)
tar_guidance = tar_guidance.expand(x_src_packed.shape[0])
else:
src_guidance = None
tar_guidance = None
# initialize our ODE Zt_edit_1=x_src
zt_edit = x_src_packed.clone()
for i, t in tqdm(enumerate(timesteps)):
if T_steps - i > n_max:
continue
scheduler._init_step_index(t)
t_i = scheduler.sigmas[scheduler.step_index]
if i < len(timesteps):
t_im1 = scheduler.sigmas[scheduler.step_index + 1]
else:
t_im1 = t_i
if T_steps - i > n_min:
# Calculate the average of the V predictions
V_delta_avg = torch.zeros_like(x_src_packed)
for k in range(n_avg):
fwd_noise = torch.randn_like(x_src_packed).to(x_src_packed.device)
zt_src = (1-t_i)*x_src_packed + (t_i)*fwd_noise
zt_tar = zt_edit + zt_src - x_src_packed
# Merge in the future to avoid double computation
Vt_src = calc_v_flux(pipe,
latents=zt_src,
prompt_embeds=src_prompt_embeds,
pooled_prompt_embeds=src_pooled_prompt_embeds,
guidance=src_guidance,
text_ids=src_text_ids,
latent_image_ids=latent_src_image_ids,
t=t)
Vt_tar = calc_v_flux(pipe,
latents=zt_tar,
prompt_embeds=tar_prompt_embeds,
pooled_prompt_embeds=tar_pooled_prompt_embeds,
guidance=tar_guidance,
text_ids=tar_text_ids,
latent_image_ids=latent_tar_image_ids,
t=t)
V_delta_avg += (1/n_avg) * (Vt_tar - Vt_src) # - (hfg-1)*( x_src))
# propagate direct ODE
zt_edit = zt_edit.to(torch.float32)
zt_edit = zt_edit + (t_im1 - t_i) * V_delta_avg
zt_edit = zt_edit.to(V_delta_avg.dtype)
else: # i >= T_steps-n_min # regular sampling last n_min steps
if i == T_steps-n_min:
# initialize SDEDIT-style generation phase
fwd_noise = torch.randn_like(x_src_packed).to(x_src_packed.device)
xt_src = scale_noise(scheduler, x_src_packed, t, noise=fwd_noise)
xt_tar = zt_edit + xt_src - x_src_packed
Vt_tar = calc_v_flux(pipe,
latents=xt_tar,
prompt_embeds=tar_prompt_embeds,
pooled_prompt_embeds=tar_pooled_prompt_embeds,
guidance=tar_guidance,
text_ids=tar_text_ids,
latent_image_ids=latent_tar_image_ids,
t=t)
xt_tar = xt_tar.to(torch.float32)
prev_sample = xt_tar + (t_im1 - t_i) * (Vt_tar)
prev_sample = prev_sample.to(Vt_tar.dtype)
xt_tar = prev_sample
out = zt_edit if n_min == 0 else xt_tar
unpacked_out = pipe._unpack_latents(out, orig_height, orig_width, pipe.vae_scale_factor)
return unpacked_out