forked from NextCenturyCorporation/mcs-scene-generator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
579 lines (500 loc) · 21.6 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
import copy
import random
import uuid
from typing import Dict, Any, Optional, List, Tuple
import exceptions
import materials
import objects
import tags
MAX_SIZE_DIFFERENCE = 0.05
MAX_TRIES = 50
MIN_RANDOM_INTERVAL = 0.05
PERFORMER_HALF_WIDTH = 0.27
PERFORMER_WIDTH = PERFORMER_HALF_WIDTH * 2.0
def random_real(a: float, b: float,
step: float = MIN_RANDOM_INTERVAL) -> float:
"""Return a random real number N where a <= N <= b and N - a is
divisible by step."""
steps = int((b - a) / step)
try:
n = random.randint(0, steps)
except ValueError as e:
raise ValueError(f'bad args to random_real: ({a}, {b}, {step})', e)
return a + (n * step)
def finalize_object_definition(
object_definition: Dict[str, Any],
choice_material: Optional[Dict[str, Any]] = None,
choice_size: Optional[Dict[str, Any]] = None,
choice_type: Optional[Dict[str, Any]] = None
) -> Dict[str, Any]:
definition_copy = copy.deepcopy(object_definition)
if choice_material is None and 'chooseMaterial' in definition_copy:
choice_material = random.choice(definition_copy['chooseMaterial'])
if choice_size is None and 'chooseSize' in definition_copy:
choice_size = random.choice(definition_copy['chooseSize'])
if choice_type is None and 'chooseType' in definition_copy:
choice_type = random.choice(definition_copy['chooseType'])
if choice_material:
for key in choice_material:
definition_copy[key] = choice_material[key]
definition_copy.pop('chooseMaterial', None)
if choice_size:
for key in choice_size:
definition_copy[key] = choice_size[key]
definition_copy.pop('chooseSize', None)
if choice_type:
for key in choice_type:
definition_copy[key] = choice_type[key]
definition_copy.pop('chooseType', None)
return definition_copy
def generate_materials_lists(material_category_list, previous_materials_lists):
if len(material_category_list) == 0:
return previous_materials_lists
output_materials_lists = []
material_attr = material_category_list[0].upper() + '_MATERIALS'
for material_and_color in getattr(materials, material_attr):
if not previous_materials_lists:
output_materials_lists.append([material_and_color])
else:
for material_list in previous_materials_lists:
output_materials_lists.append(
copy.deepcopy(material_list) + [material_and_color])
return generate_materials_lists(
material_category_list[1:],
output_materials_lists
)
def finalize_object_materials_and_colors(
object_definition: Dict[str, Any],
override_materials_list: Optional[List[Tuple[str, List[str]]]] = None
) -> List[Dict[str, Any]]:
"""Finalizes each possible choice of materials (patterns/textures)
and colors as a copy of the given object
definition and returns the list."""
materials_lists = (
[override_materials_list] if override_materials_list else []
)
if 'materialCategory' not in object_definition:
object_definition['materialCategory'] = []
if not materials_lists:
materials_lists = generate_materials_lists(
object_definition['materialCategory'],
[]
)
if not materials_lists:
definition_copy = copy.deepcopy(object_definition)
definition_copy['color'] = definition_copy.get('color', [])
definition_copy['materials'] = definition_copy.get('materials', [])
return [definition_copy]
object_definition_list = []
for materials_list in materials_lists:
definition_copy = copy.deepcopy(object_definition)
definition_copy['color'] = []
definition_copy['materials'] = [
material_and_color[0] for material_and_color in materials_list]
for material_and_color in materials_list:
if material_and_color[0] in materials.UNTRAINED_COLOR_LIST:
definition_copy['untrainedColor'] = True
for color in material_and_color[1]:
if color not in definition_copy['color']:
definition_copy['color'].append(color)
object_definition_list.append(definition_copy)
return object_definition_list
def instantiate_object(
definition: Dict[str, Any],
object_location: Dict[str, Any],
materials_list: Optional[List[Tuple[str, List[str]]]] = None
) -> Dict[str, Any]:
"""Create a new object from an object definition (as from the objects.json
file). object_location will be modified by this function."""
if definition is None or object_location is None:
raise ValueError('instantiate_object cannot take None parameters')
# Call the finalize function here in case it wasn't called before now
# (calling it twice shouldn't hurt anything).
definition = finalize_object_definition(definition)
instance = {
'id': str(uuid.uuid4()),
'type': definition['type'],
'role': '',
'info': [definition['size']],
'mass': definition['mass'] * definition.get('massMultiplier', 1),
'positionY': definition.get('positionY', 0),
'salientMaterials': None,
'color': None,
'shape': (
definition['shape'] if isinstance(definition['shape'], list)
else [definition['shape']]
),
'size': definition['size']
}
if 'dimensions' in definition:
instance['dimensions'] = definition['dimensions']
else:
raise exceptions.SceneException(
f'object definition "{definition["type"]}" doesn\'t have '
f'dimensions')
instance[tags.SCENE.UNTRAINED_CATEGORY] = (
definition.get('untrainedCategory', False)
)
instance[tags.SCENE.UNTRAINED_COLOR] = (
definition.get('untrainedColor', False)
)
instance[tags.SCENE.UNTRAINED_COMBINATION] = (
definition.get('untrainedCombination', False)
)
instance[tags.SCENE.UNTRAINED_SHAPE] = (
definition.get('untrainedShape', False)
)
instance[tags.SCENE.UNTRAINED_SIZE] = (
definition.get('untrainedSize', False)
)
for attribute in definition.get('attributes', []):
instance[attribute] = True
object_location = copy.deepcopy(object_location)
if 'offset' in definition:
object_location['position']['x'] -= definition['offset']['x']
object_location['position']['z'] -= definition['offset']['z']
instance['offset'] = definition.get('offset', {'x': 0, 'y': 0, 'z': 0})
if definition.get('closedDimensions'):
instance['closedDimensions'] = definition.get('closedDimensions')
if definition.get('closedOffset'):
instance['closedOffset'] = definition.get('closedOffset')
if 'rotation' not in definition:
definition['rotation'] = {'x': 0, 'y': 0, 'z': 0}
if 'rotation' not in object_location:
object_location['rotation'] = {'x': 0, 'y': 0, 'z': 0}
object_location['rotation']['x'] += definition['rotation']['x']
object_location['rotation']['y'] += definition['rotation']['y']
object_location['rotation']['z'] += definition['rotation']['z']
shows = [object_location]
instance['shows'] = shows
object_location['stepBegin'] = 0
object_location['scale'] = definition['scale']
if 'color' not in definition or 'materials' not in definition:
definition = random.choice(
finalize_object_materials_and_colors(definition, materials_list)
)
instance['materialCategory'] = definition.get('materialCategory', [])
instance['materials'] = definition['materials']
instance['color'] = definition['color']
# The info list contains words that we can use to filter on specific
# object tags in the UI. Start with this specific ordering of object
# tags in the info list needed for making the goalString:
# size weight color(s) material(s) shape
if 'pickupable' in definition.get('attributes', []):
instance['weight'] = 'light'
elif 'moveable' in definition.get('attributes', []):
instance['weight'] = 'heavy'
else:
instance['weight'] = 'massive'
instance['info'].append(instance['weight'])
instance['info'].extend(instance['color'])
if 'salientMaterials' in definition:
salient_materials = definition['salientMaterials']
instance['salientMaterials'] = salient_materials
instance['info'].extend(salient_materials)
instance['info'].extend(instance['shape'])
# Use the object's goalString for goal descriptions.
instance['goalString'] = ' '.join(instance['info'])
for key in ['salientMaterials', 'color', 'shape']:
if instance[key] and len(instance[key]) > 1:
instance['info'].append(' '.join(instance[key]))
info_keys = ['size', 'weight', 'salientMaterials', 'color', 'shape']
for index_1, key_1 in enumerate(info_keys):
value_1 = instance[key_1]
if isinstance(value_1, list):
value_1 = ' '.join(value_1)
for index_2, key_2 in enumerate(info_keys):
value_2 = instance[key_2]
if isinstance(value_2, list):
value_2 = ' '.join(value_2)
if index_2 > index_1 and value_1 and value_2:
instance['info'].append(value_1 + ' ' + value_2)
instance['info'].append(instance['goalString'])
is_untrained = False
for tag in [
tags.SCENE.UNTRAINED_CATEGORY,
tags.SCENE.UNTRAINED_COLOR,
tags.SCENE.UNTRAINED_COMBINATION,
tags.SCENE.UNTRAINED_SHAPE,
tags.SCENE.UNTRAINED_SIZE
]:
if instance[tag]:
instance['info'].append(tags.tag_to_label(tag))
is_untrained = True
if is_untrained:
instance['info'].append('untrained ' + instance['goalString'])
# Add isContainer tag if needed.
instance['enclosedAreas'] = definition.get('enclosedAreas', [])
if len(instance['enclosedAreas']) > 0:
instance[tags.role_to_tag(tags.ROLES.CONTAINER)] = True
return instance
def get_similar_definition(
target_object: Dict[str, Any],
nested_definition_list: List[List[Dict[str, Any]]]
) -> Optional[Dict[str, Any]]:
"""Get an object definition similar to obj but different in one of
type, material, or scale. It is possible but unlikely that no such
definition can be found, in which case it returns None.
"""
choices = ['color', 'shape', 'size']
for choice in choices:
if choice == 'color':
similarity_function = is_similar_except_in_color
elif choice == 'shape':
similarity_function = is_similar_except_in_shape
elif choice == 'size':
similarity_function = is_similar_except_in_size
output_list = []
for definition_list in nested_definition_list:
output_internal_list = []
for definition in definition_list:
output_double_internal_list = []
for comparison in (
finalize_object_materials_and_colors(definition)
):
if similarity_function(target_object, comparison):
output_double_internal_list.append(comparison)
if len(output_double_internal_list) > 0:
output_internal_list.append(output_double_internal_list)
if len(output_internal_list) > 0:
output_list.append(output_internal_list)
if len(output_list) == 0:
continue
object_definition = random.choice(random.choice(random.choice(
output_list
)))
object_definition['similarity'] = choice
return object_definition
return None
def finalize_each_definition_choice(
object_definition: Dict[str, Any]
) -> List[Dict[str, Any]]:
"""Finalize each possible material category, size, and type choice in the
given object definition (but NOT the materials property itself) and return
the list with each possible object definition choice."""
choice_list = []
for prop in ['chooseMaterial', 'chooseSize', 'chooseType']:
if prop in object_definition and len(object_definition[prop]) > 0:
previous_choice_list = copy.deepcopy(choice_list)
next_choice_list = []
for choice_string in object_definition[prop]:
if not previous_choice_list:
choice_dict = {
'chooseMaterial': None,
'chooseSize': None,
'chooseType': None
}
choice_dict[prop] = choice_string
next_choice_list.append(choice_dict)
else:
for previous_choice_dict in previous_choice_list:
choice_dict = copy.deepcopy(previous_choice_dict)
choice_dict[prop] = choice_string
next_choice_list.append(choice_dict)
choice_list = next_choice_list
if not choice_list:
return [finalize_object_definition(copy.deepcopy(object_definition))]
output_list = []
for choice_dict in choice_list:
output_list.append(
finalize_object_definition(
copy.deepcopy(object_definition),
choice_material=choice_dict['chooseMaterial'],
choice_size=choice_dict['chooseSize'],
choice_type=choice_dict['chooseType']
)
)
random.shuffle(output_list)
return output_list
def move_to_location(
object_instance: Dict[str, Any],
location: Dict[str, Any],
object_bounds: List[Dict[str, float]],
previous_object: Dict[str, Any]
) -> Dict[str, Any]:
"""Move the given object to a new location and return the object."""
new_location = copy.deepcopy(location)
if previous_object and 'offset' in previous_object:
new_location['position']['x'] += previous_object['offset']['x']
new_location['position']['z'] += previous_object['offset']['z']
if 'offset' in object_instance:
new_location['position']['x'] -= object_instance['offset']['x']
new_location['position']['z'] -= object_instance['offset']['z']
object_instance['shows'][0]['position'] = new_location['position']
object_instance['shows'][0]['rotation'] = new_location['rotation']
object_instance['shows'][0]['boundingBox'] = object_bounds
return object_instance
def retrieve_complete_definition_list(
nested_definition_list: List[List[Dict[str, Any]]]
) -> List[List[Dict[str, Any]]]:
"""Return an object definition list in which finalize_object_definition was
called on each definition in the given list so that the returned list has
each possible choice (except materials)."""
output_list = []
for definition_list in nested_definition_list:
output_internal_list = []
for definition in definition_list:
output_internal_list.extend(finalize_each_definition_choice(
definition
))
random.shuffle(output_internal_list)
output_list.append(output_internal_list)
random.shuffle(output_list)
return output_list
def retrieve_trained_definition_list(
nested_definition_list: List[List[Dict[str, Any]]]
) -> List[List[Dict[str, Any]]]:
"""Return only the trained object definitions from the given list."""
output_list = []
for definition_list in nested_definition_list:
output_internal_list = []
for definition in definition_list:
if not (
(definition.get(tags.SCENE.UNTRAINED_CATEGORY, False)) or
(definition.get(tags.SCENE.UNTRAINED_COLOR, False)) or
(definition.get(tags.SCENE.UNTRAINED_COMBINATION, False)) or
(definition.get(tags.SCENE.UNTRAINED_SHAPE, False)) or
(definition.get(tags.SCENE.UNTRAINED_SIZE, False))
):
output_internal_list.append(definition)
if len(output_internal_list) > 0:
output_list.append(output_internal_list)
return output_list
def retrieve_untrained_definition_list(
nested_definition_list: List[List[Dict[str, Any]]],
untrained_tag: str
) -> List[List[Dict[str, Any]]]:
"""Return only the object definitions from the given list that have the
given untrained tag but are otherwise completely trained."""
trained_tag_list = [tag for tag in [
tags.SCENE.UNTRAINED_CATEGORY,
tags.SCENE.UNTRAINED_COLOR,
tags.SCENE.UNTRAINED_COMBINATION,
tags.SCENE.UNTRAINED_SHAPE,
tags.SCENE.UNTRAINED_SIZE
] if tag != untrained_tag]
output_list = []
for definition_list in nested_definition_list:
output_internal_list = []
for definition in definition_list:
if definition.get(untrained_tag, False):
validated = True
for tag in trained_tag_list:
if definition.get(tag, False):
validated = False
break
if validated:
output_internal_list.append(definition)
if len(output_internal_list) > 0:
output_list.append(output_internal_list)
return output_list
def _create_size_list(
definition_or_instance_1: Dict[str, Any],
definition_or_instance_2: Dict[str, Any],
only_x_dimension: bool
) -> List[Tuple[float, float]]:
x_size_1 = definition_or_instance_1['dimensions']['x']
x_size_2 = definition_or_instance_2['dimensions']['x']
y_size_1 = definition_or_instance_1['dimensions']['y']
y_size_2 = definition_or_instance_2['dimensions']['y']
z_size_1 = definition_or_instance_1['dimensions']['z']
z_size_2 = definition_or_instance_2['dimensions']['z']
size_list = [(x_size_1, x_size_2)]
if not only_x_dimension:
size_list.extend([(y_size_1, y_size_2), (z_size_1, z_size_2)])
return size_list
def is_similar_except_in_color(
definition_or_instance_1: Dict[str, Any],
definition_or_instance_2: Dict[str, Any],
only_x_dimension: bool = False
) -> bool:
"""Return whether the two given objects are similar in shape
(type) and size (dimensions) but not color (material category)."""
size_list = _create_size_list(
definition_or_instance_1,
definition_or_instance_2,
only_x_dimension
)
return (
definition_or_instance_1 != definition_or_instance_2 and
definition_or_instance_1['type'] ==
definition_or_instance_2['type'] and
'materialCategory' in definition_or_instance_1 and
'materialCategory' in definition_or_instance_2 and
definition_or_instance_1['materialCategory'] !=
definition_or_instance_2['materialCategory'] and
all([(
(size_1 + MAX_SIZE_DIFFERENCE) >= size_2 and
(size_1 - MAX_SIZE_DIFFERENCE) <= size_2
) for size_1, size_2 in size_list])
)
def is_similar_except_in_shape(
definition_or_instance_1: Dict[str, Any],
definition_or_instance_2: Dict[str, Any],
only_x_dimension: bool = False
) -> bool:
"""Return whether the two given objects are similar in color
(material category) and size (dimensions) but not shape (type)."""
size_list = _create_size_list(
definition_or_instance_1,
definition_or_instance_2,
only_x_dimension
)
return (
definition_or_instance_1 != definition_or_instance_2 and
definition_or_instance_1['type'] !=
definition_or_instance_2['type'] and
'materialCategory' in definition_or_instance_1 and
'materialCategory' in definition_or_instance_2 and
definition_or_instance_1['materialCategory'] ==
definition_or_instance_2['materialCategory'] and
all([(
(size_1 + MAX_SIZE_DIFFERENCE) >= size_2 and
(size_1 - MAX_SIZE_DIFFERENCE) <= size_2
) for size_1, size_2 in size_list])
)
def is_similar_except_in_size(
definition_or_instance_1: Dict[str, Any],
definition_or_instance_2: Dict[str, Any],
only_x_dimension: bool = False
) -> bool:
"""Return whether the two given objects are similar in color
(material category) and shape (type) but not size (dimensions)."""
size_list = _create_size_list(
definition_or_instance_1,
definition_or_instance_2,
only_x_dimension
)
return (
definition_or_instance_1 != definition_or_instance_2 and
definition_or_instance_1['type'] ==
definition_or_instance_2['type'] and
'materialCategory' in definition_or_instance_1 and
'materialCategory' in definition_or_instance_2 and
definition_or_instance_1['materialCategory'] ==
definition_or_instance_2['materialCategory'] and
any([(
(size_1 + MAX_SIZE_DIFFERENCE) < size_2 or
(size_1 - MAX_SIZE_DIFFERENCE) > size_2
) for size_1, size_2 in size_list])
)
def choose_distractor_definition(
target_list: List[Dict[str, Any]]
) -> Dict[str, Any]:
"""Choose and return a distractor definition for the given objects."""
invalid_shape_list = [target['shape'][-1] for target in target_list]
for _ in range(MAX_TRIES):
# Distractors should always be both trained and pickupable.
definition_list = random.choice(retrieve_trained_definition_list(
objects.get(objects.ObjectDefinitionList.PICKUPABLES)
))
# Finalize the material now.
definition = random.choice(finalize_object_materials_and_colors(
finalize_object_definition(random.choice(definition_list))
))
# Distractors cannot have the same shape as an existing object from the
# given list so we don't unintentionally generate a new confusor.
if definition['shape'][-1] not in invalid_shape_list:
break
definition = None
return definition