Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Optimized Trend Tracker OTT indicator #97

Open
tarantula3535 opened this issue Jul 16, 2020 · 53 comments
Open

Optimized Trend Tracker OTT indicator #97

tarantula3535 opened this issue Jul 16, 2020 · 53 comments
Labels
Enhancement New feature or request help wanted Extra attention is needed pinescript Indicators to be converted from pinescript

Comments

@tarantula3535
Copy link

tarantula3535 commented Jul 16, 2020

hi i want to write this indicator in python but i dont have much time.. here is the tradingview's url
https://tr.tradingview.com/script/zVhoDQME/
this indicator is very helpfull the filtering in the buy signals conditions..
I would be glad if you could write this indicator in Python

@xmatthias xmatthias added Enhancement New feature or request help wanted Extra attention is needed labels Jul 16, 2020
@TomPer
Copy link

TomPer commented Aug 17, 2020

Hi ! I would also be very interested to have this OTT indicator integrated into Freqtrade.

@tarantula3535
Copy link
Author

and also this indicator..
https://tr.tradingview.com/script/sU9molfV/
Pmax profit maximizer
can anyone write this code and implement in it the freqtrade?

@tarantula3535
Copy link
Author

If I can take a little time out, it's like I figured out the logic. It can be solved by something like adding a moving average to Supertrend.

@tarantula3535
Copy link
Author

tarantula3535 commented Sep 28, 2020

hi... i use basic PMAX indicator.. here is the code.. anyone want to use it..

def PMAX(dataframe, period = 10, multiplier = 3, length=12, MAtype=1 ):
    """
    Function to compute SuperTrend
    
    Args :
        df : Pandas DataFrame which contains ['date', 'open', 'high', 'low', 'close', 'volume'] columns
        period : Integer indicates the period of computation in terms of number of candles
        multiplier : Integer indicates value to multiply the ATR
        length: moving averages length
        MAtype: type of the moving averafe 1 EMA 2 DEMA 3 T3 4 SMA 5 VIDYA
        
    Returns :
        df : Pandas DataFrame with new columns added for 
            True Range (TR), ATR (ATR_$period)
            PMAX (pm_$period_$multiplier_$length_$Matypeint)
            PMAX Direction (pmX_$period_$multiplier_$length_$Matypeint)
    """
    import talib.abstract as ta
    df = dataframe.copy()
    mavalue = 'MA_' + str(length)
    atr = 'ATR_' + str(period)
    df[atr]=ta.ATR(df , timeperiod = period)
    pm = 'pm_' + str(period) + '_' + str(multiplier) + '_' + str(length) + '_' + str(MAtype)
    pmx = 'pmX_' + str(period) + '_' + str(multiplier) + '_' + str(length) + '_' + str(MAtype)   
    """
    Pmax Algorithm :

        BASIC UPPERBAND = MA + Multiplier * ATR
        BASIC LOWERBAND = MA - Multiplier * ATR
        
        FINAL UPPERBAND = IF( (Current BASICUPPERBAND < Previous FINAL UPPERBAND) or (Previous Close > Previous FINAL UPPERBAND))
                            THEN (Current BASIC UPPERBAND) ELSE Previous FINALUPPERBAND)
        FINAL LOWERBAND = IF( (Current BASIC LOWERBAND > Previous FINAL LOWERBAND) or (Previous Close < Previous FINAL LOWERBAND)) 
                            THEN (Current BASIC LOWERBAND) ELSE Previous FINAL LOWERBAND)
        
        PMAX = IF((Previous PMAX = Previous FINAL UPPERBAND) and (Current Close <= Current FINAL UPPERBAND)) THEN
                        Current FINAL UPPERBAND
                    ELSE
                        IF((Previous PMAX = Previous FINAL UPPERBAND) and (Current Close > Current FINAL UPPERBAND)) THEN
                            Current FINAL LOWERBAND
                        ELSE
                            IF((Previous PMAX = Previous FINAL LOWERBAND) and (Current Close >= Current FINAL LOWERBAND)) THEN
                                Current FINAL LOWERBAND
                            ELSE
                                IF((Previous PMAX = Previous FINAL LOWERBAND) and (Current Close < Current FINAL LOWERBAND)) THEN
                                    Current FINAL UPPERBAND
    
    """
    # MAtype==1 --> EMA
    # MAtype==2 --> DEMA
    # MAtype==3 --> T3
    # MAtype==4 --> SMA
    # MAtype==5 --> VIDYA
    # MAtype==6 --> TEMA
    # MAtype==7 --> WMA
    # MAtype==8 --> VWMA
    # Compute basic upper and lower bands
    if MAtype==1:
        df[mavalue]=ta.EMA(df , timeperiod = length)
    elif MAtype==2:
        df[mavalue]=ta.DEMA(df , timeperiod = length)
    elif MAtype==3:
        df[mavalue]=ta.T3(df , timeperiod = length)
    elif MAtype==4:
        df[mavalue]=ta.SMA(df , timeperiod = length)
    elif MAtype==5:
        df[mavalue]= VIDYA(df , length= length)
    elif MAtype==6:
        df[mavalue]= ta.TEMA(df , timeperiod = length)
    elif MAtype==7:
        df[mavalue]= ta.WMA(df , timeperiod = length)
    elif MAtype==8:
        df[mavalue]= vwma(df , length)                        
    # Compute basic upper and lower bands
    df['basic_ub'] = df[mavalue] + multiplier * df[atr]
    df['basic_lb'] = df[mavalue] - multiplier * df[atr]
    # Compute final upper and lower bands
    df['final_ub'] = 0.00
    df['final_lb'] = 0.00
    for i in range(period, len(df)):
        df['final_ub'].iat[i] = df['basic_ub'].iat[i] if df['basic_ub'].iat[i] < df['final_ub'].iat[i - 1] or df[mavalue].iat[i - 1] > df['final_ub'].iat[i - 1] else df['final_ub'].iat[i - 1]
        df['final_lb'].iat[i] = df['basic_lb'].iat[i] if df['basic_lb'].iat[i] > df['final_lb'].iat[i - 1] or df[mavalue].iat[i - 1] < df['final_lb'].iat[i - 1] else df['final_lb'].iat[i - 1]
       
    # Set the Pmax value
    df[pm] = 0.00
    for i in range(period, len(df)):
        df[pm].iat[i] = df['final_ub'].iat[i] if df[pm].iat[i - 1] == df['final_ub'].iat[i - 1] and df[mavalue].iat[i] <= df['final_ub'].iat[i] else \
                        df['final_lb'].iat[i] if df[pm].iat[i - 1] == df['final_ub'].iat[i - 1] and df[mavalue].iat[i] >  df['final_ub'].iat[i] else \
                        df['final_lb'].iat[i] if df[pm].iat[i - 1] == df['final_lb'].iat[i - 1] and df[mavalue].iat[i] >= df['final_lb'].iat[i] else \
                        df['final_ub'].iat[i] if df[pm].iat[i - 1] == df['final_lb'].iat[i - 1] and df[mavalue].iat[i] <  df['final_lb'].iat[i] else 0.00 
                 
    # Mark the trend direction up/down
    df[pmx] = np.where((df[pm] > 0.00), np.where((df['close'] < df[pm]), 'down',  'up'), np.NaN)

    # Remove basic and final bands from the columns
    df.drop(['basic_ub', 'basic_lb', 'final_ub', 'final_lb'], inplace=True, axis=1)
    
    df.fillna(0, inplace=True)

    return df

@xmatthias
Copy link
Member

This should work for OTT:

Would be great if you could have a look at it too - i'm no pinescript expert - but would be great if we can include this in the technical module.

def OTT(dataframe, *, pds = 2, percent = 1.4):
    """
    Source: https://www.tradingview.com/script/zVhoDQME/
    Author: Anıl Özekşi
    
    Pinescript Developer: KivancOzbilgic
    
    Idea: 
        Buy when Signal line crosses above OTT
        Sell when signal crosses below OTT
        
    usage:
      dataframe['OTT'], dataframe['OTTSignal'] = OTT(dataframe)
    """
    df = dataframe.copy()
    alpha = 2 / (pds + 1)
    
    df['ud1'] = np.where(df['close'] > df['close'].shift(1), df['close'] - df['close'].shift() , 0)
    df['dd1'] = np.where(df['close'] < df['close'].shift(1), df['close'].shift() - df['close'] , 0)
    
    df['UD'] = df['ud1'].rolling(9).sum()
    df['DD'] = df['dd1'].rolling(9).sum()
    df['CMO'] = ((df['UD'] - df['DD']) / (df['UD'] + df['DD'])).fillna(0).abs()
    
    df['Var'] = 0.0
    for i in range(pds, len(df)):
        df['Var'].iat[i] = (alpha * df['CMO'].iat[i] * df['close'].iat[i]) + (1 - alpha * df['CMO'].iat[i]) * df['Var'].iat[i-1]
    df['fark'] = df['Var'] * percent * 0.01
    df['longStop'] = df['Var'] - df['fark']
    df['longStopPrev'] = df['longStop'].shift(1).ffill(limit=1)
    
    df['longStop'] = np.where(df['Var'] > df['longStopPrev'], df[['longStop', 'longStopPrev']].max(axis=1), df['longStop'])
    
    df['shortStop'] = df['Var'] + df['fark']
    df['shortStopPrev'] = df['shortStop'].shift(1).ffill(limit=1)
    df['shortStop'] = np.where(df['Var'] < df['shortStopPrev'], df[['shortStop', 'shortStopPrev']].max(axis=1), df['shortStop'])

    df['dir'] = 1
    # dir = 1
    # dir := nz(dir[1], dir)
    # dir := dir == -1 and Var > shortStopPrev ? 1 : dir == 1 and Var < longStopPrev ? -1 : dir
    df['dir'] = np.where(df['Var'] > df['shortStopPrev'], 1, np.where(df['Var'] < df['longStopPrev'], -1, df['dir']))
    df['MT'] = np.where(df['dir'] == 1, df['longStop'], df['shortStop'])
    df['OTT'] = np.where(df['Var'] > df['MT'], df['MT'] * (200 + percent) / 200, df['MT'] * (200 - percent) / 200)
    
    
    return df['OTT'], df['Var']
    

@tarantula3535
Copy link
Author

in the OTT
If the calculations compare correctly with tradingview, different results come out..
I could not find the reason for this.. e.g. ARDR USDT
image
image

@xmatthias
Copy link
Member

Interresting
the point i'm not confident is the dir calculation.

    # dir = 1
    # dir := nz(dir[1], dir)
    # dir := dir == -1 and Var > shortStopPrev ? 1 : dir == 1 and Var < longStopPrev ? -1 : dir

In my understanding, dir will be assigned 1 - will be assigned to all rows with 1 by using the previous row - making the comparisons to dir below (if it's 1 or -1) irrelevant.

Might be this should be calculated in a loop - but i'm not sure if that's how pinescript does it.

@tarantula3535
Copy link
Author

i couldnt find the bug where is... some pairs work correctly..some pairs not..

@xmatthias
Copy link
Member

xmatthias commented Oct 4, 2020

One big problem with these indicators is always the starting point (this is fully based on the result of the previous row - so a change 2000 lines ago will (very slightly) change the result in the last candle.
It's usually not visible as it's in the 10th decimal place (or wherever) - but slight change nonetheless.

Obviously, this error will then depend on the price of the coin (a coin priced 0.00005 is more likely to have a "visible" error than one priced 200.05)...

It should however be similar with other indicators as well (like VIDYA) - which also has a similar calculation

@tarantula3535
Copy link
Author

@xmatthias you right that... Pmax is also an indicator that works well.... you should take a look at it too

@Cuzeppe
Copy link

Cuzeppe commented Jan 30, 2021

Hi @tarantula3535 I'm a newbie and don't know how to add this indicator. but my favorite indicator on tradingview is pmax. Is there any documentation that explains how to do this?

@tarantula3535
Copy link
Author

tarantula3535 commented Jan 30, 2021

def PMAX(dataframe, period = 10, multiplier = 3, length=12, MAtype=1, src=1):
    """
    Function to compute PMAX
    
    Args :
        df : Pandas DataFrame which contains ['date', 'open', 'high', 'low', 'close', 'volume'] columns
        period : Integer indicates the period of computation in terms of number of candles
        multiplier : Integer indicates value to multiply the ATR
        length: moving averages length
        MAtype: type of the moving averafe 1 EMA 2 DEMA 3 T3 4 SMA 5 VIDYA
        
    Returns :
        df : Pandas DataFrame with new columns added for 
            True Range (TR), ATR (ATR_$period)
            PMAX (pm_$period_$multiplier_$length_$Matypeint)
            PMAX Direction (pmX_$period_$multiplier_$length_$Matypeint)
    """
    import talib.abstract as ta
    df = dataframe.copy()
    mavalue = 'MA_' + str(MAtype) + '_' + str(length)
    atr = 'ATR_' + str(period)
    df[atr]=ta.ATR(df , timeperiod = period)
    pm = 'pm_' + str(period) + '_' + str(multiplier) + '_' + str(length) + '_' + str(MAtype)
    pmx = 'pmX_' + str(period) + '_' + str(multiplier) + '_' + str(length) + '_' + str(MAtype)
    """
    Pmax Algorithm :

        BASIC UPPERBAND = MA + Multiplier * ATR
        BASIC LOWERBAND = MA - Multiplier * ATR
        
        FINAL UPPERBAND = IF( (Current BASICUPPERBAND < Previous FINAL UPPERBAND) or (Previous Close > Previous FINAL UPPERBAND))
                            THEN (Current BASIC UPPERBAND) ELSE Previous FINALUPPERBAND)
        FINAL LOWERBAND = IF( (Current BASIC LOWERBAND > Previous FINAL LOWERBAND) or (Previous Close < Previous FINAL LOWERBAND)) 
                            THEN (Current BASIC LOWERBAND) ELSE Previous FINAL LOWERBAND)
        
        PMAX = IF((Previous PMAX = Previous FINAL UPPERBAND) and (Current Close <= Current FINAL UPPERBAND)) THEN
                        Current FINAL UPPERBAND
                    ELSE
                        IF((Previous PMAX = Previous FINAL UPPERBAND) and (Current Close > Current FINAL UPPERBAND)) THEN
                            Current FINAL LOWERBAND
                        ELSE
                            IF((Previous PMAX = Previous FINAL LOWERBAND) and (Current Close >= Current FINAL LOWERBAND)) THEN
                                Current FINAL LOWERBAND
                            ELSE
                                IF((Previous PMAX = Previous FINAL LOWERBAND) and (Current Close < Current FINAL LOWERBAND)) THEN
                                    Current FINAL UPPERBAND
    
    """
    # MAtype==1 --> EMA
    # MAtype==2 --> DEMA
    # MAtype==3 --> T3
    # MAtype==4 --> SMA
    # MAtype==5 --> VIDYA
    # MAtype==6 --> TEMA
    # MAtype==7 --> WMA
    # MAtype==8 --> VWMA
    # Compute basic upper and lower bands
    if src == 1:
        masrc=df["close"]
    elif src == 2:
        masrc = (df["high"] + df["low"]) / 2
    elif src == 3:
        masrc = (df["high"] + df["low"]+ df["close"] + df["open"]) / 4
    if MAtype==1:
        df[mavalue]= ta.EMA(masrc , timeperiod = length)
    elif MAtype==2:
        df[mavalue]= ta.DEMA(masrc , timeperiod = length)
    elif MAtype==3:
        df[mavalue]= ta.T3(masrc , timeperiod = length)
    elif MAtype==4:
        df[mavalue]= ta.SMA(masrc , timeperiod = length)
    elif MAtype==5:
        df[mavalue]= VIDYA(df , length= length)
    elif MAtype==6:
        df[mavalue]= ta.TEMA(masrc , timeperiod = length)
    elif MAtype==7:
        df[mavalue]= ta.WMA(df , timeperiod = length)
    elif MAtype==8:
        df[mavalue]= vwma(df , length)
    elif MAtype==9:
        df[mavalue]= zema(df , period=length)
    # Compute basic upper and lower bands
    df['basic_ub'] = df[mavalue] + (multiplier * df[atr])
    df['basic_lb'] = df[mavalue] - (multiplier * df[atr])
    # Compute final upper and lower bands
    df['final_ub'] = 0.00
    df['final_lb'] = 0.00
    for i in range(period, len(df)):
        df['final_ub'].iat[i] = df['basic_ub'].iat[i] if df['basic_ub'].iat[i] < df['final_ub'].iat[i - 1] or df[mavalue].iat[i - 1] > df['final_ub'].iat[i - 1] else df['final_ub'].iat[i - 1]
        df['final_lb'].iat[i] = df['basic_lb'].iat[i] if df['basic_lb'].iat[i] > df['final_lb'].iat[i - 1] or df[mavalue].iat[i - 1] < df['final_lb'].iat[i - 1] else df['final_lb'].iat[i - 1]
       
    # Set the Pmax value
    df[pm] = 0.00
    for i in range(period, len(df)):
        df[pm].iat[i] = df['final_ub'].iat[i] if df[pm].iat[i - 1] == df['final_ub'].iat[i - 1] and df[mavalue].iat[i] <= df['final_ub'].iat[i] else \
                        df['final_lb'].iat[i] if df[pm].iat[i - 1] == df['final_ub'].iat[i - 1] and df[mavalue].iat[i] >  df['final_ub'].iat[i] else \
                        df['final_lb'].iat[i] if df[pm].iat[i - 1] == df['final_lb'].iat[i - 1] and df[mavalue].iat[i] >= df['final_lb'].iat[i] else \
                        df['final_ub'].iat[i] if df[pm].iat[i - 1] == df['final_lb'].iat[i - 1] and df[mavalue].iat[i] <  df['final_lb'].iat[i] else 0.00 
                 
    # Mark the trend direction up/down
    df[pmx] = np.where((df[pm] > 0.00), np.where((df[mavalue] < df[pm]), 'down',  'up'), np.NaN)

    # Remove basic and final bands from the columns
    df.drop(['basic_ub', 'basic_lb', 'final_ub', 'final_lb'], inplace=True, axis=1)
    
    df.fillna(0, inplace=True)

    return df

This is the function i upgrade it..

        pmdf2 = PMAX(dataframe, period=10, multiplier=3, length=9, MAtype=2, src=3)
        dataframe['pmX_10_3_9_2'] = pmdf2['pmX_10_3_9_2']

i use in the strategy just like that...i hopefully helped you..
e.g. trend is "up" look other indicators...
e.g. ema crossover pmax value..

@Cuzeppe
Copy link

Cuzeppe commented Jan 31, 2021

Actually i couldnt find where to add the indicator codes and which part of its and how to implement indicator to my strategy file. can u share ur strategy file and indicators file pls? [email protected] I would be grateful

@Cuzeppe
Copy link

Cuzeppe commented Jan 31, 2021

when i try to download "technical" from git it downloads all the files into .local/lib/python3.8/site-packages am i doing something wrong?

@tarantula3535
Copy link
Author

if you don't use virtual env , you are doing right..

when i try to download "technical" from git it downloads all the files into .local/lib/python3.8/site-packages am i doing something wrong?
i am copy and paste the function in this file...
technical-->indicator-->indcators.py
and
call in the strategy file
image
just like that..

@tarantula3535
Copy link
Author

this is the definition.. How you use it is up to you...
for example
ema cross pmax value --> You can use it as in the populate_buy_trend

(qtpylib.crossed_above(dataframe[mavalue] , dataframe[f'pm_{pmaxperiod}_{pmaxmulti}_{pmaxl}_{pmaxtype}']))

@tarantula3535
Copy link
Author

pmax.zip
I hope it helps to give an idea..
i am using it this way...

@Cuzeppe
Copy link

Cuzeppe commented Jan 31, 2021

omg thank you so much finally it works. I've been trying to run this for days and thanks to you it is working now. Thank you very much I am grateful. my tradingview btcusdt pmax strategy is 1min timeframe atr:14 mult:4 ma:VAR ma lenght:25 and im using it with inverse fisher rsi lenght :10 smooth: 9
if pmax goes for buy wait for price retest. if iftrsi goes below -0.50 go long from pmax or ma200. im trading with this setup. i will try freqtrade for futures trade if it works

@tarantula3535
Copy link
Author

omg thank you so much finally it works. I've been trying to run this for days and thanks to you it is working now. Thank you very much I am grateful. my tradingview btcusdt pmax strategy is 1min timeframe atr:14 mult:4 ma:VAR ma lenght:25 and im using it with inverse fisher rsi lenght :10 smooth: 9
if pmax goes for buy wait for price retest. if iftrsi goes below -0.50 go long from pmax or ma200. im trading with this setup. i will try freqtrade for futures trade if it works

i am glad you succeeded.. your strategy seems so good.. I've tried something like this...you should also try with inverse fisher average...

@tarantula3535
Copy link
Author

@xmatthias i may close the issue..I would be glad if you add the PMAX indicator with the necessary explanations.You can check it too.

@Cuzeppe
Copy link

Cuzeppe commented Jan 31, 2021

i will try thank you so much again. @tarantula3535

@xmatthias
Copy link
Member

xmatthias commented Feb 1, 2021

i may close the issue..I would be glad if you add the PMAX indicator with the necessary explanations.

then leave it open ... otherwise it'll "disappear" into the "closed issues" list ... and unless i explicitly remember (which i probably won't) - it'll not be added.
on the other hand, nothing prevents you from attempting a Pull request adding this :)
it's no magic... :)

@tarantula3535
Copy link
Author

tarantula3535 commented Feb 1, 2021

i may close the issue..I would be glad if you add the PMAX indicator with the necessary explanations.

then leave it open ... otherwise it'll "disappear" into the "closed issues" list ... and unless i explicitly remember (which i probably won't) - it'll not be added.
on the other hand, nothing prevents you from attempting a Pull request adding this :)
it's no magic... :)

you probably right..its no magic,I am already using it...The point is for more people to use it..
Thanks for all your hard work and time

@tarantula3535
Copy link
Author

tarantula3535 commented Mar 12, 2021

pmax.zip
I hope it helps to give an idea..
i am using it this way...

Merhabalar.Rica etsem Pmax için kullandığınız hyperopt dosyasını da paylaşır mısınız?

pmaxmulti.zip
ufak tefek ayarlamalarla kullanabilirsiniz..fakat uzun aralık tanımlarsanız çok fazla ram kullanır ve işlemi iptal edebilir..
çalışma mantığını anlayıp fikir vermesi için kullanabilirsiniz..umarım işinize yara sonuçları paylaşırsınız..

@xmatthias
Copy link
Member

I'd apreciate if we could keep the issues in english ... otherwise it'll exclude most of the remaining comunity from contributing (or benefitting) from the discussions.

@manvalorian
Copy link

omg thank you so much finally it works. I've been trying to run this for days and thanks to you it is working now. Thank you very much I am grateful. my tradingview btcusdt pmax strategy is 1min timeframe atr:14 mult:4 ma:VAR ma lenght:25 and im using it with inverse fisher rsi lenght :10 smooth: 9
if pmax goes for buy wait for price retest. if iftrsi goes below -0.50 go long from pmax or ma200. im trading with this setup. i will try freqtrade for futures trade if it works

how to you configure the smooth in the inverse fisher, @Cuzeppe ?

@quents
Copy link

quents commented Apr 1, 2021

This should work for OTT:

Would be great if you could have a look at it too - i'm no pinescript expert - but would be great if we can include this in the technical module.

def OTT(dataframe, *, pds = 2, percent = 1.4):
    """
    Source: https://www.tradingview.com/script/zVhoDQME/
    Author: Anıl Özekşi
    
    Pinescript Developer: KivancOzbilgic
    
    Idea: 
        Buy when Signal line crosses above OTT
        Sell when signal crosses below OTT
        
    usage:
      dataframe['OTT'], dataframe['OTTSignal'] = OTT(dataframe)
    """
    df = dataframe.copy()
    alpha = 2 / (pds + 1)
    
    df['ud1'] = np.where(df['close'] > df['close'].shift(1), df['close'] - df['close'].shift() , 0)
    df['dd1'] = np.where(df['close'] < df['close'].shift(1), df['close'].shift() - df['close'] , 0)
    
    df['UD'] = df['ud1'].rolling(9).sum()
    df['DD'] = df['dd1'].rolling(9).sum()
    df['CMO'] = ((df['UD'] - df['DD']) / (df['UD'] + df['DD'])).fillna(0).abs()
    
    df['Var'] = 0.0
    for i in range(pds, len(df)):
        df['Var'].iat[i] = (alpha * df['CMO'].iat[i] * df['close'].iat[i]) + (1 - alpha * df['CMO'].iat[i]) * df['Var'].iat[i-1]
    df['fark'] = df['Var'] * percent * 0.01
    df['longStop'] = df['Var'] - df['fark']
    df['longStopPrev'] = df['longStop'].shift(1).ffill(limit=1)
    
    df['longStop'] = np.where(df['Var'] > df['longStopPrev'], df[['longStop', 'longStopPrev']].max(axis=1), df['longStop'])
    
    df['shortStop'] = df['Var'] + df['fark']
    df['shortStopPrev'] = df['shortStop'].shift(1).ffill(limit=1)
    df['shortStop'] = np.where(df['Var'] < df['shortStopPrev'], df[['shortStop', 'shortStopPrev']].max(axis=1), df['shortStop'])

    df['dir'] = 1
    # dir = 1
    # dir := nz(dir[1], dir)
    # dir := dir == -1 and Var > shortStopPrev ? 1 : dir == 1 and Var < longStopPrev ? -1 : dir
    df['dir'] = np.where(df['Var'] > df['shortStopPrev'], 1, np.where(df['Var'] < df['longStopPrev'], -1, df['dir']))
    df['MT'] = np.where(df['dir'] == 1, df['longStop'], df['shortStop'])
    df['OTT'] = np.where(df['Var'] > df['MT'], df['MT'] * (200 + percent) / 200, df['MT'] * (200 - percent) / 200)
    
    
    return df['OTT'], df['Var']
    

I guess

df['shortStop'] = np.where(df['Var'] < df['shortStopPrev'], df[['shortStop', 'shortStopPrev']].max(axis=1), df['shortStop'])

should be

df['shortStop'] = np.where(df['Var'] < df['shortStopPrev'], df[['shortStop', 'shortStopPrev']].min(axis=1), df['shortStop'])

but it did not change the result, it still plots a different graph from the TradingView's OTT with the same parameters. I think you are right, there must be some for loop at the calculation of df['dir'] because at first glance it seems meaningless to define at as 1, and then assign it to the previous dir and check if it is -1 or 1 at the following line.

dir = 1
dir := nz(dir[1], dir)
dir := dir == -1 and MAvg > shortStopPrev ? 1 : dir == 1 and MAvg < longStopPrev ? -1 : dir

Anyone to help?

@rafadan2
Copy link

rafadan2 commented Apr 2, 2021

This should work for OTT:
Would be great if you could have a look at it too - i'm no pinescript expert - but would be great if we can include this in the technical module.

def OTT(dataframe, *, pds = 2, percent = 1.4):
    """
    Source: https://www.tradingview.com/script/zVhoDQME/
    Author: Anıl Özekşi
    
    Pinescript Developer: KivancOzbilgic
    
    Idea: 
        Buy when Signal line crosses above OTT
        Sell when signal crosses below OTT
        
    usage:
      dataframe['OTT'], dataframe['OTTSignal'] = OTT(dataframe)
    """
    df = dataframe.copy()
    alpha = 2 / (pds + 1)
    
    df['ud1'] = np.where(df['close'] > df['close'].shift(1), df['close'] - df['close'].shift() , 0)
    df['dd1'] = np.where(df['close'] < df['close'].shift(1), df['close'].shift() - df['close'] , 0)
    
    df['UD'] = df['ud1'].rolling(9).sum()
    df['DD'] = df['dd1'].rolling(9).sum()
    df['CMO'] = ((df['UD'] - df['DD']) / (df['UD'] + df['DD'])).fillna(0).abs()
    
    df['Var'] = 0.0
    for i in range(pds, len(df)):
        df['Var'].iat[i] = (alpha * df['CMO'].iat[i] * df['close'].iat[i]) + (1 - alpha * df['CMO'].iat[i]) * df['Var'].iat[i-1]
    df['fark'] = df['Var'] * percent * 0.01
    df['longStop'] = df['Var'] - df['fark']
    df['longStopPrev'] = df['longStop'].shift(1).ffill(limit=1)
    
    df['longStop'] = np.where(df['Var'] > df['longStopPrev'], df[['longStop', 'longStopPrev']].max(axis=1), df['longStop'])
    
    df['shortStop'] = df['Var'] + df['fark']
    df['shortStopPrev'] = df['shortStop'].shift(1).ffill(limit=1)
    df['shortStop'] = np.where(df['Var'] < df['shortStopPrev'], df[['shortStop', 'shortStopPrev']].max(axis=1), df['shortStop'])

    df['dir'] = 1
    # dir = 1
    # dir := nz(dir[1], dir)
    # dir := dir == -1 and Var > shortStopPrev ? 1 : dir == 1 and Var < longStopPrev ? -1 : dir
    df['dir'] = np.where(df['Var'] > df['shortStopPrev'], 1, np.where(df['Var'] < df['longStopPrev'], -1, df['dir']))
    df['MT'] = np.where(df['dir'] == 1, df['longStop'], df['shortStop'])
    df['OTT'] = np.where(df['Var'] > df['MT'], df['MT'] * (200 + percent) / 200, df['MT'] * (200 - percent) / 200)
    
    
    return df['OTT'], df['Var']
    

I guess

df['shortStop'] = np.where(df['Var'] < df['shortStopPrev'], df[['shortStop', 'shortStopPrev']].max(axis=1), df['shortStop'])

should be

df['shortStop'] = np.where(df['Var'] < df['shortStopPrev'], df[['shortStop', 'shortStopPrev']].min(axis=1), df['shortStop'])

but it did not change the result, it still plots a different graph from the TradingView's OTT with the same parameters. I think you are right, there must be some for loop at the calculation of df['dir'] because at first glance it seems meaningless to define at as 1, and then assign it to the previous dir and check if it is -1 or 1 at the following line.

dir = 1
dir := nz(dir[1], dir)
dir := dir == -1 and MAvg > shortStopPrev ? 1 : dir == 1 and MAvg < longStopPrev ? -1 : dir

Anyone to help?

I am trying to write the same code in R without much Pinescript knowledge. https://www.tradingview.com/pine-script-docs/en/v4/Quickstart_guide.html#execution-model-of-pine-scripts

Pine script seems to be running recuvrsively or similar to a loop.

I think below code gives something similar for the dir part. Maybe it needs a lag here and there but basically, what it does is if there is a change in dir, for all the next values it is also changed.

`for(i in 1:maxNo) {

if(dir[i] == -1 & MAvg[i]>shortStopPrev[i] ){
dir[i] <- 1
dir[i:maxNo] <- 1
}
else if(dir[i] == 1 & MAvg[i]<longStopPrev[i]){
dir[i:maxNo] <- -1

}

}
`

@quents
Copy link

quents commented Apr 3, 2021

This should work for OTT:

Would be great if you could have a look at it too - i'm no pinescript expert - but would be great if we can include this in the technical module.

def OTT(dataframe, *, pds = 2, percent = 1.4):

"""
Source: https://www.tradingview.com/script/zVhoDQME/
Author: Anıl Özekşi
Pinescript Developer: KivancOzbilgic
Idea: 
    Buy when Signal line crosses above OTT
    Sell when signal crosses below OTT
usage:
  dataframe['OTT'], dataframe['OTTSignal'] = OTT(dataframe)
"""
df = dataframe.copy()
alpha = 2 / (pds + 1)
df['ud1'] = np.where(df['close'] > df['close'].shift(1), df['close'] - df['close'].shift() , 0)
df['dd1'] = np.where(df['close'] < df['close'].shift(1), df['close'].shift() - df['close'] , 0)
df['UD'] = df['ud1'].rolling(9).sum()
df['DD'] = df['dd1'].rolling(9).sum()
df['CMO'] = ((df['UD'] - df['DD']) / (df['UD'] + df['DD'])).fillna(0).abs()
df['Var'] = 0.0
for i in range(pds, len(df)):
    df['Var'].iat[i] = (alpha * df['CMO'].iat[i] * df['close'].iat[i]) + (1 - alpha * df['CMO'].iat[i]) * df['Var'].iat[i-1]
df['fark'] = df['Var'] * percent * 0.01
df['longStop'] = df['Var'] - df['fark']
df['longStopPrev'] = df['longStop'].shift(1).ffill(limit=1)
df['longStop'] = np.where(df['Var'] > df['longStopPrev'], df[['longStop', 'longStopPrev']].max(axis=1), df['longStop'])
df['shortStop'] = df['Var'] + df['fark']
df['shortStopPrev'] = df['shortStop'].shift(1).ffill(limit=1)
df['shortStop'] = np.where(df['Var'] < df['shortStopPrev'], df[['shortStop', 'shortStopPrev']].max(axis=1), df['shortStop'])
df['dir'] = 1
# dir = 1
# dir := nz(dir[1], dir)
# dir := dir == -1 and Var > shortStopPrev ? 1 : dir == 1 and Var < longStopPrev ? -1 : dir
df['dir'] = np.where(df['Var'] > df['shortStopPrev'], 1, np.where(df['Var'] < df['longStopPrev'], -1, df['dir']))
df['MT'] = np.where(df['dir'] == 1, df['longStop'], df['shortStop'])
df['OTT'] = np.where(df['Var'] > df['MT'], df['MT'] * (200 + percent) / 200, df['MT'] * (200 - percent) / 200)
return df['OTT'], df['Var']

I guess

df['shortStop'] = np.where(df['Var'] < df['shortStopPrev'], df[['shortStop', 'shortStopPrev']].max(axis=1), df['shortStop'])

should be

df['shortStop'] = np.where(df['Var'] < df['shortStopPrev'], df[['shortStop', 'shortStopPrev']].min(axis=1), df['shortStop'])

but it did not change the result, it still plots a different graph from the TradingView's OTT with the same parameters. I think you are right, there must be some for loop at the calculation of df['dir'] because at first glance it seems meaningless to define at as 1, and then assign it to the previous dir and check if it is -1 or 1 at the following line.

dir = 1

dir := nz(dir[1], dir)

dir := dir == -1 and MAvg > shortStopPrev ? 1 : dir == 1 and MAvg < longStopPrev ? -1 : dir

Anyone to help?

I am trying to write the same code in R without much Pinescript knowledge. https://www.tradingview.com/pine-script-docs/en/v4/Quickstart_guide.html#execution-model-of-pine-scripts

Pine script seems to be running recuvrsively or similar to a loop.

I think below code gives something similar for the dir part. Maybe it needs a lag here and there but basically, what it does is if there is a change in dir, for all the next values it is also changed.

`for(i in 1:maxNo) {

if(dir[i] == -1 & MAvg[i]>shortStopPrev[i] ){

dir[i] <- 1

dir[i:maxNo] <- 1

}

else if(dir[i] == 1 & MAvg[i]<longStopPrev[i]){

dir[i:maxNo] <- -1

}

}

`

Thank you, I'll give it a try. What is exactly maxNo? Is it the period of OTT?

@rafadan2
Copy link

rafadan2 commented Apr 3, 2021

I used maxNo for the number of bars, or how long the data is. So the loop iterates from the beginning until maxNo(end of data).

@sirichoke-kunwed
Copy link

sirichoke-kunwed commented Sep 10, 2021

dir = np.where(Var>shortStopPrev, 1, np.where(Var<longStopPrev, -1, 0)

This works for me

@Orhan972
Copy link

dir = np.where(Var>shortStopPrev, 1, np.where(Var<longStopPrev, -1, 0)

This works for me

Can you send the complete code that works ?

@ysdede
Copy link

ysdede commented Sep 24, 2021

Hi, I came on this site while looking for an OTT indicator in Python, thanks to @tarantula3535 for inspiring me with his efforts.
I've built a Numpy/Numba-based version as well. At the time, just VAR is supported (EDIT: I've added Kaufman's Adaptive Moving Average (KAMA) and WMA), but adding ta-lib moving averages is straightforward. You can use it with freqtrade or the other frameworks relies on Pandas dataframe by converting pandas dfs to numpy array and vice versa. You can disable, remove, or install the part that uses Jesse's split tool.
Var indicator is currently incompatible with Numba and performs slowly, but it works; I've validated OTT output with Tradingview version.
custom_indicators
Suggestions and pull requests are welcome.

@ibrahimclk
Copy link

this is working have fun :)

def OTT(df):

pds = 2
percent = 1.4
alpha = 2 / (pds + 1)

df['ud1'] = np.where(df['close'] > df['close'].shift(1), (df['close'] - df['close'].shift()) , 0)
df['dd1'] = np.where(df['close'] < df['close'].shift(1), (df['close'].shift() - df['close']) , 0)
df['UD'] = df['ud1'].rolling(9).sum()
df['DD'] = df['dd1'].rolling(9).sum()
df['CMO'] = ((df['UD'] - df['DD']) / (df['UD'] + df['DD'])).fillna(0).abs()

# df['Var'] = talib.EMA(df['close'], timeperiod=5)
df['Var'] = 0.0
for i in range(pds, len(df)):
    df['Var'].iat[i] = (alpha * df['CMO'].iat[i] * df['close'].iat[i]) + (1 - alpha * df['CMO'].iat[i]) * df['Var'].iat[i-1]

df['fark'] = df['Var'] * percent * 0.01
df['newlongstop'] = df['Var'] - df['fark']
df['newshortstop'] = df['Var'] + df['fark']
df['longstop'] = 0.0
df['shortstop'] = 999999999999999999
# df['dir'] = 1
for i in df['UD']:

    def maxlongstop():
        df.loc[(df['newlongstop'] > df['longstop'].shift(1)) , 'longstop'] = df['newlongstop']
        df.loc[(df['longstop'].shift(1) > df['newlongstop']), 'longstop'] = df['longstop'].shift(1) 
        
        return df['longstop']

    def minshortstop():
        df.loc[(df['newshortstop'] < df['shortstop'].shift(1)), 'shortstop'] = df['newshortstop']
        df.loc[(df['shortstop'].shift(1) < df['newshortstop']), 'shortstop'] = df['shortstop'].shift(1)
        
        return df['shortstop']

    df['longstop']= np.where (
        (
            (df['Var'] > df['longstop'].shift(1))
        ),maxlongstop(),df['newlongstop']
    )


    df['shortstop'] = np.where(
        (
            (df['Var'] < df['shortstop'].shift(1))
        ), minshortstop(), df['newshortstop'])

#get xover

df['xlongstop'] = np.where (
    (
        (df['Var'].shift(1) > df['longstop'].shift(1)) & 
        (df['Var'] < df['longstop'].shift(1))
    ), 1,0)

df['xshortstop'] =np.where(
    (
        (df['Var'].shift(1) < df['shortstop'].shift(1)) & 
        (df['Var'] > df['shortstop'].shift(1))
    ), 1,0)

df['trend']=0
df['dir'] = 0
for i in df['UD']:
        df['trend'] = np.where(
        (
            (df['xshortstop'] == 1)
        ),1, (np.where((df['xlongstop'] == 1),-1,df['trend'].shift(1)))
    )

        df['dir'] = np.where(
        (
            (df['xshortstop'] == 1)
        ),1, (np.where((df['xlongstop'] == 1),-1,df['dir'].shift(1).fillna(1)))
    )


#get OTT

df['MT'] = np.where(df['dir'] == 1, df['longstop'], df['shortstop'])
df['OTT'] = np.where(df['Var'] > df['MT'], (df['MT'] * (200 + percent) / 200), (df['MT'] * (200 - percent) / 200))
df['OTT'] = df['OTT'].shift(2) 

return df['OTT'], df['Var']

@froggleston
Copy link

Don't these implementations lookahead?

for i in range(period, len(df)):

@xmatthias
Copy link
Member

Don't these implementations lookahead?

no - not because of this, anyway - this is simply a loop accessing all columns. It would lookahead if you'd use a "total" (or last row) within the loop - but it doesn't, only access is to i and i-1

@KaanRF
Copy link

KaanRF commented Dec 23, 2021

this is working have fun :)

def OTT(df):

pds = 2
percent = 1.4
alpha = 2 / (pds + 1)

df['ud1'] = np.where(df['close'] > df['close'].shift(1), (df['close'] - df['close'].shift()) , 0)
df['dd1'] = np.where(df['close'] < df['close'].shift(1), (df['close'].shift() - df['close']) , 0)
df['UD'] = df['ud1'].rolling(9).sum()
df['DD'] = df['dd1'].rolling(9).sum()
df['CMO'] = ((df['UD'] - df['DD']) / (df['UD'] + df['DD'])).fillna(0).abs()

# df['Var'] = talib.EMA(df['close'], timeperiod=5)
df['Var'] = 0.0
for i in range(pds, len(df)):
    df['Var'].iat[i] = (alpha * df['CMO'].iat[i] * df['close'].iat[i]) + (1 - alpha * df['CMO'].iat[i]) * df['Var'].iat[i-1]

df['fark'] = df['Var'] * percent * 0.01
df['newlongstop'] = df['Var'] - df['fark']
df['newshortstop'] = df['Var'] + df['fark']
df['longstop'] = 0.0
df['shortstop'] = 999999999999999999
# df['dir'] = 1
for i in df['UD']:

    def maxlongstop():
        df.loc[(df['newlongstop'] > df['longstop'].shift(1)) , 'longstop'] = df['newlongstop']
        df.loc[(df['longstop'].shift(1) > df['newlongstop']), 'longstop'] = df['longstop'].shift(1) 
        
        return df['longstop']

    def minshortstop():
        df.loc[(df['newshortstop'] < df['shortstop'].shift(1)), 'shortstop'] = df['newshortstop']
        df.loc[(df['shortstop'].shift(1) < df['newshortstop']), 'shortstop'] = df['shortstop'].shift(1)
        
        return df['shortstop']

    df['longstop']= np.where (
        (
            (df['Var'] > df['longstop'].shift(1))
        ),maxlongstop(),df['newlongstop']
    )


    df['shortstop'] = np.where(
        (
            (df['Var'] < df['shortstop'].shift(1))
        ), minshortstop(), df['newshortstop'])

#get xover

df['xlongstop'] = np.where (
    (
        (df['Var'].shift(1) > df['longstop'].shift(1)) & 
        (df['Var'] < df['longstop'].shift(1))
    ), 1,0)

df['xshortstop'] =np.where(
    (
        (df['Var'].shift(1) < df['shortstop'].shift(1)) & 
        (df['Var'] > df['shortstop'].shift(1))
    ), 1,0)

df['trend']=0
df['dir'] = 0
for i in df['UD']:
        df['trend'] = np.where(
        (
            (df['xshortstop'] == 1)
        ),1, (np.where((df['xlongstop'] == 1),-1,df['trend'].shift(1)))
    )

        df['dir'] = np.where(
        (
            (df['xshortstop'] == 1)
        ),1, (np.where((df['xlongstop'] == 1),-1,df['dir'].shift(1).fillna(1)))
    )


#get OTT

df['MT'] = np.where(df['dir'] == 1, df['longstop'], df['shortstop'])
df['OTT'] = np.where(df['Var'] > df['MT'], (df['MT'] * (200 + percent) / 200), (df['MT'] * (200 - percent) / 200))
df['OTT'] = df['OTT'].shift(2) 

return df['OTT'], df['Var']

Could you please create a PR to tecnical repository ? and also simple usage ?

@equinox794
Copy link

düzgün çalışan ott var mı ?

@svsvfx
Copy link

svsvfx commented Mar 2, 2022

Hello everyone, first of all thx for OTT and Pmax indicator. But I used for backtest I need Kıvanç Özbilic's Stochastic OTT.
https://tr.tradingview.com/script/BK45kYNB-Stochastic-OTT/

This indicator works great for 1m charts. I'm not good for programing but i tired few things but when I try to smooting stochastic %K with "vidya" it's return NaN. I'm used pandas_ta library. Here is my simple code;

periodK = 600
period_d = 33
smoothK = 500

"""for stoch %K with vidya"
df["stoch"] = df.ta.stoch(k=periodK,d=period_d,smooth_k=smoothK, mamode = "vidya")[f"STOCHk_{periodK}{period_d}{smoothK}"]

"""for smooting %K with vidya"
df["k"] = ta.ma("vidya", source = df["stoch"], length = smoothK)

and df["k"] return NaN all time.
Thanks for helping.

@KaanRF
Copy link

KaanRF commented Mar 22, 2022

this is working have fun :)

def OTT(df):

pds = 2
percent = 1.4
alpha = 2 / (pds + 1)

df['ud1'] = np.where(df['close'] > df['close'].shift(1), (df['close'] - df['close'].shift()) , 0)
df['dd1'] = np.where(df['close'] < df['close'].shift(1), (df['close'].shift() - df['close']) , 0)
df['UD'] = df['ud1'].rolling(9).sum()
df['DD'] = df['dd1'].rolling(9).sum()
df['CMO'] = ((df['UD'] - df['DD']) / (df['UD'] + df['DD'])).fillna(0).abs()

# df['Var'] = talib.EMA(df['close'], timeperiod=5)
df['Var'] = 0.0
for i in range(pds, len(df)):
    df['Var'].iat[i] = (alpha * df['CMO'].iat[i] * df['close'].iat[i]) + (1 - alpha * df['CMO'].iat[i]) * df['Var'].iat[i-1]

df['fark'] = df['Var'] * percent * 0.01
df['newlongstop'] = df['Var'] - df['fark']
df['newshortstop'] = df['Var'] + df['fark']
df['longstop'] = 0.0
df['shortstop'] = 999999999999999999
# df['dir'] = 1
for i in df['UD']:

    def maxlongstop():
        df.loc[(df['newlongstop'] > df['longstop'].shift(1)) , 'longstop'] = df['newlongstop']
        df.loc[(df['longstop'].shift(1) > df['newlongstop']), 'longstop'] = df['longstop'].shift(1) 
        
        return df['longstop']

    def minshortstop():
        df.loc[(df['newshortstop'] < df['shortstop'].shift(1)), 'shortstop'] = df['newshortstop']
        df.loc[(df['shortstop'].shift(1) < df['newshortstop']), 'shortstop'] = df['shortstop'].shift(1)
        
        return df['shortstop']

    df['longstop']= np.where (
        (
            (df['Var'] > df['longstop'].shift(1))
        ),maxlongstop(),df['newlongstop']
    )


    df['shortstop'] = np.where(
        (
            (df['Var'] < df['shortstop'].shift(1))
        ), minshortstop(), df['newshortstop'])

#get xover

df['xlongstop'] = np.where (
    (
        (df['Var'].shift(1) > df['longstop'].shift(1)) & 
        (df['Var'] < df['longstop'].shift(1))
    ), 1,0)

df['xshortstop'] =np.where(
    (
        (df['Var'].shift(1) < df['shortstop'].shift(1)) & 
        (df['Var'] > df['shortstop'].shift(1))
    ), 1,0)

df['trend']=0
df['dir'] = 0
for i in df['UD']:
        df['trend'] = np.where(
        (
            (df['xshortstop'] == 1)
        ),1, (np.where((df['xlongstop'] == 1),-1,df['trend'].shift(1)))
    )

        df['dir'] = np.where(
        (
            (df['xshortstop'] == 1)
        ),1, (np.where((df['xlongstop'] == 1),-1,df['dir'].shift(1).fillna(1)))
    )


#get OTT

df['MT'] = np.where(df['dir'] == 1, df['longstop'], df['shortstop'])
df['OTT'] = np.where(df['Var'] > df['MT'], (df['MT'] * (200 + percent) / 200), (df['MT'] * (200 - percent) / 200))
df['OTT'] = df['OTT'].shift(2) 

return df['OTT'], df['Var']

Is there any one who tested this ?

@dpanday77

This comment was marked as duplicate.

@dpanday77
Copy link

dpanday77 commented Apr 4, 2022

Hi, is there someone who can adjust the OTT to SOTT indicator?

@dpanday77
Copy link

this is working have fun :)

def OTT(df):

pds = 2
percent = 1.4
alpha = 2 / (pds + 1)

df['ud1'] = np.where(df['close'] > df['close'].shift(1), (df['close'] - df['close'].shift()) , 0)
df['dd1'] = np.where(df['close'] < df['close'].shift(1), (df['close'].shift() - df['close']) , 0)
df['UD'] = df['ud1'].rolling(9).sum()
df['DD'] = df['dd1'].rolling(9).sum()
df['CMO'] = ((df['UD'] - df['DD']) / (df['UD'] + df['DD'])).fillna(0).abs()

# df['Var'] = talib.EMA(df['close'], timeperiod=5)
df['Var'] = 0.0
for i in range(pds, len(df)):
    df['Var'].iat[i] = (alpha * df['CMO'].iat[i] * df['close'].iat[i]) + (1 - alpha * df['CMO'].iat[i]) * df['Var'].iat[i-1]

df['fark'] = df['Var'] * percent * 0.01
df['newlongstop'] = df['Var'] - df['fark']
df['newshortstop'] = df['Var'] + df['fark']
df['longstop'] = 0.0
df['shortstop'] = 999999999999999999
# df['dir'] = 1
for i in df['UD']:

    def maxlongstop():
        df.loc[(df['newlongstop'] > df['longstop'].shift(1)) , 'longstop'] = df['newlongstop']
        df.loc[(df['longstop'].shift(1) > df['newlongstop']), 'longstop'] = df['longstop'].shift(1) 
        
        return df['longstop']

    def minshortstop():
        df.loc[(df['newshortstop'] < df['shortstop'].shift(1)), 'shortstop'] = df['newshortstop']
        df.loc[(df['shortstop'].shift(1) < df['newshortstop']), 'shortstop'] = df['shortstop'].shift(1)
        
        return df['shortstop']

    df['longstop']= np.where (
        (
            (df['Var'] > df['longstop'].shift(1))
        ),maxlongstop(),df['newlongstop']
    )


    df['shortstop'] = np.where(
        (
            (df['Var'] < df['shortstop'].shift(1))
        ), minshortstop(), df['newshortstop'])

#get xover

df['xlongstop'] = np.where (
    (
        (df['Var'].shift(1) > df['longstop'].shift(1)) & 
        (df['Var'] < df['longstop'].shift(1))
    ), 1,0)

df['xshortstop'] =np.where(
    (
        (df['Var'].shift(1) < df['shortstop'].shift(1)) & 
        (df['Var'] > df['shortstop'].shift(1))
    ), 1,0)

df['trend']=0
df['dir'] = 0
for i in df['UD']:
        df['trend'] = np.where(
        (
            (df['xshortstop'] == 1)
        ),1, (np.where((df['xlongstop'] == 1),-1,df['trend'].shift(1)))
    )

        df['dir'] = np.where(
        (
            (df['xshortstop'] == 1)
        ),1, (np.where((df['xlongstop'] == 1),-1,df['dir'].shift(1).fillna(1)))
    )


#get OTT

df['MT'] = np.where(df['dir'] == 1, df['longstop'], df['shortstop'])
df['OTT'] = np.where(df['Var'] > df['MT'], (df['MT'] * (200 + percent) / 200), (df['MT'] * (200 - percent) / 200))
df['OTT'] = df['OTT'].shift(2) 

return df['OTT'], df['Var']

Hi, can you please modify the code to the Stochastic OTT? (https://www.tradingview.com/script/BK45kYNB-Stochastic-OTT/)

@magrawalgit
Copy link

magrawalgit commented Jul 29, 2022

Did minor modifications like rounding off, added final buy/sell signal...here is the working & tested code (data matches with TV) !


def OTT(df):
    pds = 2
    percent = 1.4
    alpha = 2 / (pds + 1)

    df['ud1'] = np.where(df['close'] > df['close'].shift(1), (df['close'] - df['close'].shift()) , 0)
    df['dd1'] = np.where(df['close'] < df['close'].shift(1), (df['close'].shift() - df['close']) , 0)
    df['UD'] = df['ud1'].rolling(9).sum()
    df['DD'] = df['dd1'].rolling(9).sum()
    df['CMO'] = ((df['UD'] - df['DD']) / (df['UD'] + df['DD'])).fillna(0).abs()

    # df['Var'] = talib.EMA(df['close'], timeperiod=5)
    df['Var'] = 0.0
    for i in range(pds, len(df)):
        df['Var'].iat[i] = (alpha * df['CMO'].iat[i] * df['close'].iat[i]) + (1 - alpha * df['CMO'].iat[i]) * df['Var'].iat[i-1]

    df['fark'] = df['Var'] * percent * 0.01
    df['newlongstop'] = df['Var'] - df['fark']
    df['newshortstop'] = df['Var'] + df['fark']
    df['longstop'] = 0.0
    df['shortstop'] = 999999999999999999
    # df['dir'] = 1
    for i in df['UD']:

        def maxlongstop():
            df.loc[(df['newlongstop'] > df['longstop'].shift(1)) , 'longstop'] = df['newlongstop']
            df.loc[(df['longstop'].shift(1) > df['newlongstop']), 'longstop'] = df['longstop'].shift(1) 

            return df['longstop']

        def minshortstop():
            df.loc[(df['newshortstop'] < df['shortstop'].shift(1)), 'shortstop'] = df['newshortstop']
            df.loc[(df['shortstop'].shift(1) < df['newshortstop']), 'shortstop'] = df['shortstop'].shift(1)

            return df['shortstop']

        df['longstop']= np.where (
            (
                (df['Var'] > df['longstop'].shift(1))
            ),maxlongstop(),df['newlongstop']
        )


        df['shortstop'] = np.where(
            (
                (df['Var'] < df['shortstop'].shift(1))
            ), minshortstop(), df['newshortstop'])

    #get xover

    df['xlongstop'] = np.where (
        (
            (df['Var'].shift(1) > df['longstop'].shift(1)) & 
            (df['Var'] < df['longstop'].shift(1))
        ), 1,0)

    df['xshortstop'] =np.where(
        (
            (df['Var'].shift(1) < df['shortstop'].shift(1)) & 
            (df['Var'] > df['shortstop'].shift(1))
        ), 1,0)

    df['trend']=0
    df['dir'] = 0
    for i in df['UD']:
            df['trend'] = np.where(
            (
                (df['xshortstop'] == 1)
            ),1, (np.where((df['xlongstop'] == 1),-1,df['trend'].shift(1)))
        )

            df['dir'] = np.where(
            (
                (df['xshortstop'] == 1)
            ),1, (np.where((df['xlongstop'] == 1),-1,df['dir'].shift(1).fillna(1)))
        )


    #get OTT

    df['MT'] = np.where(df['dir'] == 1, df['longstop'], df['shortstop'])
    df['OTT'] = np.where(df['Var'] > df['MT'], (df['MT'] * (200 + percent) / 200), (df['MT'] * (200 - percent) / 200))
    # round the numeric columns
    df = df.round(2)
    
    #this OTT2 column now is to be shifted by 2 prev values
    df['OTT2'] = df['OTT'].shift(2)
    df['OTT3'] = df['OTT'].shift(3)
    
    df['buySignalk'] = np.where(df['Var'] > df['OTT2'], 1, 0)
    df['buySignalr'] = np.where(df['OTT2'] > df['OTT3'], 1, 0)
    df['buySignalc'] = np.where(df['close'] > df['OTT2'], 1, 0)
    
    df['sellSignallk'] = np.where(df['Var'] < df['OTT2'], 1, 0)
    df['sellSignallc'] = np.where(df['Var'] < df['OTT3'], 1, 0)
    df['sellSignallr'] = np.where(df['Var'] < df['OTT2'], 1, 0)
    
    condn = ( ( df['buySignalk'] == 1) | (df['buySignalr'] == 1) | (df['buySignalc'] == 1 ) )
    
    df['buy'] = np.where( condn, 1, 0)
    
    condn = ( ( df['sellSignallk'] == 1) | (df['sellSignallc'] == 1 ) | ( df['sellSignallr'] == 1 ) )
    
    df['sell'] = np.where( condn, 1, 0)
    
    #print(df.dtypes)
    #return df['OTT'], df['Var']
    return df

@dpanday77
Copy link

@mata1234 When i print out the df of OTT and Var then the values are not the same as with TV. I tested several settings by changing the pds and percent variables. Also when using another timeframe.
Maybe you can have a look at it.
Besides that i wonder if you are able to convert this indicator as well: https://www.tradingview.com/script/BK45kYNB-Stochastic-OTT/

@froggleston
Copy link

TV indicators might well not be the same as other TA libraries so you probably will see different results for more complex calculations.

@ahmedevv
Copy link

If you guys haven't figured out the OTT indicator in Python then I've implemented it a few weeks back in my BOT which is working with SuperTrend, ADX, EMA and OTT. I can give you guys the implementation of OTT. Let me know if I can be of any help.

@dpanday77
Copy link

If you guys haven't figured out the OTT indicator in Python then I've implemented it a few weeks back in my BOT which is working with SuperTrend, ADX, EMA and OTT. I can give you guys the implementation of OTT. Let me know if I can be of any help.

@ahmedevv I'm interested on how you have implemented the indicator and also which version because the ones i have used doesn't match exactly with the values of Tradingview

@amalysh
Copy link

amalysh commented Jan 6, 2023

def PMAX(dataframe, period = 10, multiplier = 3, length=12, MAtype=1, src=1):
    """
    Function to compute PMAX
    
    Args :
        df : Pandas DataFrame which contains ['date', 'open', 'high', 'low', 'close', 'volume'] columns
        period : Integer indicates the period of computation in terms of number of candles
        multiplier : Integer indicates value to multiply the ATR
        length: moving averages length
        MAtype: type of the moving averafe 1 EMA 2 DEMA 3 T3 4 SMA 5 VIDYA
        
    Returns :
        df : Pandas DataFrame with new columns added for 
            True Range (TR), ATR (ATR_$period)
            PMAX (pm_$period_$multiplier_$length_$Matypeint)
            PMAX Direction (pmX_$period_$multiplier_$length_$Matypeint)
    """
    import talib.abstract as ta
    df = dataframe.copy()
    mavalue = 'MA_' + str(MAtype) + '_' + str(length)
    atr = 'ATR_' + str(period)
    df[atr]=ta.ATR(df , timeperiod = period)
    pm = 'pm_' + str(period) + '_' + str(multiplier) + '_' + str(length) + '_' + str(MAtype)
    pmx = 'pmX_' + str(period) + '_' + str(multiplier) + '_' + str(length) + '_' + str(MAtype)
    """
    Pmax Algorithm :

        BASIC UPPERBAND = MA + Multiplier * ATR
        BASIC LOWERBAND = MA - Multiplier * ATR
        
        FINAL UPPERBAND = IF( (Current BASICUPPERBAND < Previous FINAL UPPERBAND) or (Previous Close > Previous FINAL UPPERBAND))
                            THEN (Current BASIC UPPERBAND) ELSE Previous FINALUPPERBAND)
        FINAL LOWERBAND = IF( (Current BASIC LOWERBAND > Previous FINAL LOWERBAND) or (Previous Close < Previous FINAL LOWERBAND)) 
                            THEN (Current BASIC LOWERBAND) ELSE Previous FINAL LOWERBAND)
        
        PMAX = IF((Previous PMAX = Previous FINAL UPPERBAND) and (Current Close <= Current FINAL UPPERBAND)) THEN
                        Current FINAL UPPERBAND
                    ELSE
                        IF((Previous PMAX = Previous FINAL UPPERBAND) and (Current Close > Current FINAL UPPERBAND)) THEN
                            Current FINAL LOWERBAND
                        ELSE
                            IF((Previous PMAX = Previous FINAL LOWERBAND) and (Current Close >= Current FINAL LOWERBAND)) THEN
                                Current FINAL LOWERBAND
                            ELSE
                                IF((Previous PMAX = Previous FINAL LOWERBAND) and (Current Close < Current FINAL LOWERBAND)) THEN
                                    Current FINAL UPPERBAND
    
    """
    # MAtype==1 --> EMA
    # MAtype==2 --> DEMA
    # MAtype==3 --> T3
    # MAtype==4 --> SMA
    # MAtype==5 --> VIDYA
    # MAtype==6 --> TEMA
    # MAtype==7 --> WMA
    # MAtype==8 --> VWMA
    # Compute basic upper and lower bands
    if src == 1:
        masrc=df["close"]
    elif src == 2:
        masrc = (df["high"] + df["low"]) / 2
    elif src == 3:
        masrc = (df["high"] + df["low"]+ df["close"] + df["open"]) / 4
    if MAtype==1:
        df[mavalue]= ta.EMA(masrc , timeperiod = length)
    elif MAtype==2:
        df[mavalue]= ta.DEMA(masrc , timeperiod = length)
    elif MAtype==3:
        df[mavalue]= ta.T3(masrc , timeperiod = length)
    elif MAtype==4:
        df[mavalue]= ta.SMA(masrc , timeperiod = length)
    elif MAtype==5:
        df[mavalue]= VIDYA(df , length= length)
    elif MAtype==6:
        df[mavalue]= ta.TEMA(masrc , timeperiod = length)
    elif MAtype==7:
        df[mavalue]= ta.WMA(df , timeperiod = length)
    elif MAtype==8:
        df[mavalue]= vwma(df , length)
    elif MAtype==9:
        df[mavalue]= zema(df , period=length)
    # Compute basic upper and lower bands
    df['basic_ub'] = df[mavalue] + (multiplier * df[atr])
    df['basic_lb'] = df[mavalue] - (multiplier * df[atr])
    # Compute final upper and lower bands
    df['final_ub'] = 0.00
    df['final_lb'] = 0.00
    for i in range(period, len(df)):
        df['final_ub'].iat[i] = df['basic_ub'].iat[i] if df['basic_ub'].iat[i] < df['final_ub'].iat[i - 1] or df[mavalue].iat[i - 1] > df['final_ub'].iat[i - 1] else df['final_ub'].iat[i - 1]
        df['final_lb'].iat[i] = df['basic_lb'].iat[i] if df['basic_lb'].iat[i] > df['final_lb'].iat[i - 1] or df[mavalue].iat[i - 1] < df['final_lb'].iat[i - 1] else df['final_lb'].iat[i - 1]
       
    # Set the Pmax value
    df[pm] = 0.00
    for i in range(period, len(df)):
        df[pm].iat[i] = df['final_ub'].iat[i] if df[pm].iat[i - 1] == df['final_ub'].iat[i - 1] and df[mavalue].iat[i] <= df['final_ub'].iat[i] else \
                        df['final_lb'].iat[i] if df[pm].iat[i - 1] == df['final_ub'].iat[i - 1] and df[mavalue].iat[i] >  df['final_ub'].iat[i] else \
                        df['final_lb'].iat[i] if df[pm].iat[i - 1] == df['final_lb'].iat[i - 1] and df[mavalue].iat[i] >= df['final_lb'].iat[i] else \
                        df['final_ub'].iat[i] if df[pm].iat[i - 1] == df['final_lb'].iat[i - 1] and df[mavalue].iat[i] <  df['final_lb'].iat[i] else 0.00 
                 
    # Mark the trend direction up/down
    df[pmx] = np.where((df[pm] > 0.00), np.where((df[mavalue] < df[pm]), 'down',  'up'), np.NaN)

    # Remove basic and final bands from the columns
    df.drop(['basic_ub', 'basic_lb', 'final_ub', 'final_lb'], inplace=True, axis=1)
    
    df.fillna(0, inplace=True)

    return df

This is the function i upgrade it..

        pmdf2 = PMAX(dataframe, period=10, multiplier=3, length=9, MAtype=2, src=3)
        dataframe['pmX_10_3_9_2'] = pmdf2['pmX_10_3_9_2']

i use in the strategy just like that...i hopefully helped you.. e.g. trend is "up" look other indicators... e.g. ema crossover pmax value..

Hi guys! can someone explain why in PMAX for loop starting from ATR period instead of 1?
for i in range(period, len(df)):

@xmatthias
Copy link
Member

Hi guys! can someone explain why in PMAX for loop starting from ATR period instead of 1?
for i in range(period, len(df)):

most likely, because ATR will be empty (NaN) for the first period candles. This makes all calculations based off of it either NaN or wrong.
starting from period is a micro-optimization (it'll avoid a few loops) - but not doing it would be pointless, too.

@BlueDigitalWizard
Copy link

@ahmedevv i'm interested in your implementation of OTT and Supertrend. Can you share please ?

@pongpom
Copy link

pongpom commented Jun 11, 2023

https://github.com/OnlyFibonacci/AlgoSeyri/blob/main/indicators/indicators.py
This is exactly the same as the tradingview version of OTT.
However, there is a slight difference in ohlcv data (in my case, using binance api data) between tradingview and the exchange, so don't expect perfect compatibility. From what I've experienced, if you want perfect compatibility, you can use tradingview api to get tradingview ohlcv data and use it, but I don't recommend this.

I guess y'all found this already but just in case I'll leave this here.

@xmatthias xmatthias added the pinescript Indicators to be converted from pinescript label Aug 22, 2023
@acemi1
Copy link

acemi1 commented Nov 12, 2023

I tried all the codes above. OTT is calculated incorrectly in all but one case. Only https://github.com/OnlyFibonacci/AlgoSeyri/blob/main/indicators/indicators.py is correct. But this code runs incredibly slow. Is it possible to share the correctly calculated OTT indicator?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Enhancement New feature or request help wanted Extra attention is needed pinescript Indicators to be converted from pinescript
Projects
None yet
Development

No branches or pull requests