We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Trying to call qtransform for a TimeSeries containing a LISA-like waveform from BBHx raises an error.
qtransform
TimeSeries
Error
--------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[14], line 30 28 wf_fd = get_fd_det_waveform(**params)["LISA_A"] 29 wf_td = wf_fd.to_timeseries() ---> 30 times, freqs, power = wf_td.qtransform( 31 delta_t=wf_td.delta_t, 32 delta_f=wf_td.delta_f, 33 frange=(1e-4, 1e-1), 34 ) File ~/git_repos/pycbc_worktrees/lisa_ew/pycbc/types/timeseries.py:754, in TimeSeries.qtransform(self, delta_t, delta_f, logfsteps, frange, qrange, mismatch, return_complex) 751 frange = (30, int(self.sample_rate / 2 * 8)) 753 q_base = qtiling(self, qrange, frange, mismatch) --> 754 _, times, freqs, q_plane = qplane(q_base, self.to_frequencyseries(), 755 return_complex=return_complex) 756 if logfsteps and delta_f: 757 raise ValueError("Provide only one (or none) of delta_f and logfsteps") File ~/git_repos/pycbc_worktrees/lisa_ew/pycbc/filter/qtransform.py:69, in qplane(qplane_tile_dict, fseries, return_complex) 67 energies = [] 68 for f0 in qplane_tile_dict[q]: ---> 69 energy = qseries(fseries, q, f0, return_complex=return_complex) 70 menergy = abs(energy).max() 71 energies.append(energy) File ~/git_repos/pycbc_worktrees/lisa_ew/pycbc/filter/qtransform.py:213, in qseries(fseries, Q, f0, return_complex) 210 end = int(start + window_size) 211 center = (start + end) // 2 --> 213 windowed = fseries[start:end] * (1 - xfrequencies ** 2) ** 2 * norm 215 tlen = (len(fseries)-1) * 2 216 windowed.resize(tlen) File ~/git_repos/pycbc_worktrees/lisa_ew/pycbc/types/array.py:217, in Array.__array_ufunc__(self, ufunc, method, *inputs, **kwargs) 215 def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): 216 inputs = [i.numpy() if isinstance(i, Array) else i for i in inputs] --> 217 ret = getattr(ufunc, method)(*inputs, **kwargs) 218 if hasattr(ret, 'shape') and ret.shape == self.shape: 219 ret = self._return(ret) ValueError: operands could not be broadcast together with shapes (2315721,) (2374927,)
Code to reproduce
Note: this requires having BBHx and the PyCBC BBHx plugin installed.
import numpy as np from pycbc.waveform import get_fd_det_waveform params = {} params["ifos"] = "LISA_A" params["ref_frame"] = "LISA" params["approximant"] = "BBHX_PhenomD" params["coa_phase"] = 0.0 params["tdi"] = 1.5 params["mass1"] = 1e6 params["mass2"] = 8e5 params["spin1z"] = 0.0 params["spin2z"] = 0.0 params["distance"] = 410 params["inclination"] = np.pi / 2 params["t_obs_start"] = 31536000 params["delta_f"] = 1.0 / params["t_obs_start"] params["f_lower"] = 1e-4 params["f_ref"] = 8e-4 params["f_final"] = 0.1 params["delta_t"] = 1 / 0.2 params["t_offset"] = 9206958.120016199 params["tc"] = 4799624.274911478 params["eclipticlongitude"] = 0.5 params["eclipticlatitude"] = 0.23 params["polarization"] = 0.1 wf_fd = get_fd_det_waveform(**params)["LISA_A"] wf_td = wf_fd.to_timeseries() times, freqs, power = wf_td.qtransform( delta_t=wf_td.delta_t, delta_f=wf_td.delta_f, frange=(1e-4, 1e-1), )
The text was updated successfully, but these errors were encountered:
WuShichao
No branches or pull requests
Trying to call
qtransform
for aTimeSeries
containing a LISA-like waveform from BBHx raises an error.Error
Code to reproduce
Note: this requires having BBHx and the PyCBC BBHx plugin installed.
The text was updated successfully, but these errors were encountered: